
Homework Policy: Working in groups is fine, but each member must submit their own writeup and write their
own code. Over-the-shoulder coding is prohibited. Please write the members of your group on your solutions.
There is no strict limit to the size of the group but we may find it a bit suspicious if there are more than 4 to a
team. For coding problems, please include your code and report your results (values, plots, etc.) in your PDF
submission. You will lose points if your experimental results are only accessible through rerunning your code.
Homework will be submitted via Gradescope (https://gradescope.com/). We accept late submissions but your
score will be rescaled to .

In this problem, we will begin by implementing a Fully Connected Layer, also often known as a Dense Layer,
which we will then use to learn an averaging function.

An Artificial Neural Network (henceforth abreviated as ANN), and more specfically a Feedforward (i.e., acyclic)
ANN, is composed of Layers in a sequence. The first layer is the input, the last layer is the output, and, layers
in between the two are commonly termed "hidden" layers.

Layers in an ANN are composed of Neurons, which, in their simplest form at least, recieve some inputs,
multiply them by some weights and sum the weighted inputs to produce their outputs. These outputs are then
sometimes passed through nonlinearities to get "activations." Then finally these "activations" are passed to
forthcoming layers as their inputs. That said, for this question, we will only be concerned with linear networks.
In other words, the activation function we use is simply the identity (for an input , the activation function
returns ).

The above paragraph’s description of a neuron can be illustrated through a diagram:
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Question 1: Implementing a Fully Connected Layer
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Take a look at the partial implementation of a Fully Connected Layer (the FCLayer class in the code). As you
will notice there, the initialization of the parameters has been given for you (we will talk more about this later).
From the initialization code and the term "Fully Connected," it should be quite clear what a Fully Connected
Layer looks like. A diagram and explanation is given below to make it clear what a Fully Connected Layer looks
like:

Task 1 (a) Implement the Linear Activation function and the Linear Activation Gradient. We will need
these functions later.



As shown above, the Fully Connected Layer takes  inputs and produces  outputs. Every neuron
is "connected" to every other, and so our weight matrix is of shape . Suppose the input is given by 

, then   gives the input to the top neuron in the right
above (the yellow rectangle). Normally, as in SVM for example, we also add a bias (to allow for modeling a
more general class of functions.) So, we then have  . Note
that there is an index on the bias as we will have 4 biases in the above diagram corresponding to each of the 

 neurons in the output, .

Note: The tests given are only simple sanity checks, and more may be used during grading. So, be sure to test
your implementation.

Now, we will implement the MSE loss function and it’s gradient which together will allow us to measure how
good our predictions are with respect to a given target and help us in later updating our weights and learning
through backpropagation.
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Task 1 (b) Implement the forward()  function in the FCLayer class. The only argument to this
function is the input to the layer. Now, comment out Check 1 and run it. All checks should pass.



You may now run check2()  to verify that the above functions are correctly implemented. Please include the
output in your submission.

Now, we have to define an optimization step, i.e., a gradient descent step in particular, and then we can
proceed to actually training a network later using backpropagation.

Given an input  and some delta by which they should be changed , an optimization step modifies  in
some way using  with the aim of better performance on some loss function .

We have already discussed gradient descent many times before, however, a brief refresher is given below.

We are concerned with gradient descent to minimize a loss function, and hence, assuming  gives the
gradient of the loss with respect to a given layer’s weights, we change the weights of the layer in the direction
opposite the gradient to reduce the loss.

The step size also matters a lot in how good a solution we find and how quickly we find it. We will control this,
as is usual, with a learning rate, say . Thus, we have the vanilla gradient descent step: 

.

Your first step is to implement this simple optimization step.

Now, to learn weights that will lead us to better model a desired input-output function, we will use
backpropagation which was covered in the lectures. If you would like another refresher, take a look at this
video: https://www.youtube.com/watch?v=H47Y7pAssTI.

A few things to note:

The arguments to this function are the previous layer’s delta.

You can use the member variable _input  and _output  to cache inputs or outputs to a layer. You

Task 1 (c) Implement the meanSquaredErrorLoss()  and meanSquaredErrorLossDerivative()

functions. The arguments to these functions are the predictions of an ANN, , and the target, .y t
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Task 1 (d) Implement the get_parameter_update()  function in the VanillaGradientDescent

class in optim.py  where you are given an input, x , a delta, dx , and a learning rate, lr .

Task 1 (e) Implement backprop() .

https://www.youtube.com/watch?v=H47Y7pAssTI


should not need to add any arguments to the backward function or member variables to the FCLayer
class.

Remember to return a delta for the next layer in the backpropagation step (i.e., for the previous layer when
looking forward from the input layer.)

Also, remember to update your parameters after you have calculated the

for the previous layer (when looking forward.)

Run Check 3.

For this question, train a Fully Connected Layer to learn an averaging function (of 5 inputs.) Most of the
explanations required are given in the code (see train_averaging()  in train.py )

Note: For this question and the following questions, not much skeleton code is given and no checks are
provided. You have more freedom about choosing how you implement certain functions. That said, you should
be checking all your functions and code with your own test cases (we may grade your work later using our own
test cases.)

δ

Question 2: Learning a simple function, Averaging

Task 2:

Question 3: Constructing a Multilayer Perceptron



A sequence of Fully Connected Layers is called a Multi-Layer perceptron (deriving from the 1960s introduction
of the term perceptron to talk about what we often generally call neurons today).

For this question you have two tasks:

Next, we will make training and evaluation easier by introducing another abstraction.

In Question 3, we work with a simple linear regression like problem. However, for classification problems, we
normally use a SoftMax Layer. This is what you will implement first.

Now, we still need a loss function for classification problems.

Now, all we have done till now is in the linear regime. To allow for non-linearities, which is very important when
modeling non-linear functions or classifying non-linearly separable data, we need non-linear activation
functions.

Task 3 (a) Implement the MLP class. See the notes in __init__  for more details.

Task 3 (b) Implement the Manager class that makes training and evaluation easier. See the notes in the
` Manager  class for more details.

Question 4: SoftMax Layer, Activation Functions, Modeling XOR

Task 4 (a) Implement a SoftmaxLayer much like FCLayer in the layers.py file (No skeleton code is given
for this question).

Task 4 (b) Implement the crossEntropy related functions in loss_functions.py



Finally, we can use the above components to learn a classification model for a dataset that is known to be non-
linearly separable, namely XOR.

Make sure to try a simple 1 FCLayer network (i.e., a network without hidden layers) and with a linear activation.
Also, try a more complex network with some non-linear activations (and atleast 1 hidden layer.)

State any insights you find. Include plots (of the loss for example).

To make gradient descent more smooth (i.e., to decrease oscillations) and to make gradient descent faster, it is
often useful to use what is known as momentum. This simply means to use a previous update. This can be
expressed as two steps shown below.

The only addition to vanilla gradient descent is the new parameter  which quantifies how much we are going
to stick to the direction (the momentum) and previous update itself ( ). If , we get vanilla gradient
descent. If momentum is used, values of 0.95 through 0.99 are common (though sometimes smaller values or
larger ones are used.)

Now, we are going to tackle a more useful, sizeable problem, classification of handwritten digits.

Task 4 (c) Implement all of the remaining activation functions in activation_functions.py .

Task 4 (d) Implement train_XOR()  and try different networks. All networks you try should have two
outputs that signify probabilities (of an input belonging in the 0 class or 1 class.)

Question 5: Classifying Digits with a Multilayer Perceptron

v = μv + γ L(⋅; θ)∇θ

θ = θ − ν

μ
v μ = 0

Task 5 (a) Implement get_parameter_update()  in the MomentumGradientDescent class.



Some code is given for you to get the MNIST dataset with handwritten digit images and labels.

Explore neural nets and deep learning more!

After getting the Question 5 baseline model trained and working, we want you to do a basic experiment.
Explore one of the features listed below and do analysis on the impact it has on your network. What effects are
there on training time? Performance? Does it lead to overfitting, or maybe underfitting? There is no shortage of
possible questions to ask. Training a neural network well is often described as an “art”, and in order to master
this craft it is important to have some intuition of the effects of these parameters. There are so many, we cannot
ask you to explore them all, so choose one and try to do some basic quantitative analysis. (This means we
expect to see a chart or table with numerical results, not just a paragraph vaguely describing what you have
observed.)

Possible options:

Learning rate, protocols for lowering the learning rate as you train
Weight decay (regularization)
Network depth, i.e. the effect of adding or removing layers
Layer width, i.e. changing the size of the layers
Weight initialization (see FCLayer’s init.)
Try implementing extra features (dropout)

Task 5 (b) Train an MLP (using a Manager as well) to achieve at least 90% accuracy on the test set.

Question 6: Exploration

Task 6:


