
Detecting Attacks on the CAN Protocol With Machine Learning

Valliappa Chockalingam, Ian Larson, Daniel Lin, Spencer Nofzinger
University of Michigan

{valli, anzallos, danielin, snofz}@umich.edu

Abstract
Modern automobiles have seen a dramatic increase in
the use of electronic systems over the last decade as
they have gotten “smarter” and more technologically ad-
vanced. In doing so, a trust has been placed on increas-
ingly complex embedded systems with the safety of both
passengers and pedestrians at risk. In particular, one
of the most common methods of connecting the differ-
ent Electronic Control Units (ECUs) in a vehicle, the
Controller Area Network (CAN) bus, has been repeat-
edly shown to be vulnerable to various intrusion based
attacks. While securing communication protocols has
received large amounts of attention within the security
community, the unique constraints and complexities of
embedded systems and the CAN protocol, which dates
back to the 1980s, make many tried defenses imprac-
tical or impossible. Given the rise of the use of Ma-
chine Learning (ML) techniques in anomaly detection,
in this paper we investigate the use of different ML algo-
rithms in detecting anomalies in CAN packets or packet
sequences, compare the algorithms with a discussion
of some common attacks on the CAN protocol, and fi-
nally discuss some of the implementation details of such
Anomaly Detectors.

1 Introduction

For most of its existence, the automobile has been a
largely mechanical, combustion-powered system. While
electrical systems have existed in cars for decades, it is
only recently, i.e., over the last few decades, that automo-
biles have seen a rapid rise in the number and complexity
of electronic components and can be viewed as large net-
works of complex computers. Additionally, this trend of
the increasing electrification of vehicles is unlikely to be
reversed any time soon as the automotive industry shifts
towards autonomous behavior, electronic controls, and
electric power.

A problem arises from the burgeoningly apparent is-
sue that in any autonomous, wire-controlled, or electric-
powered vehicle, numerous sensors and controllers must
perform properly together to ensure the safety of both
passengers and pedestrians. Indeed, as the automotive
industry has changed, electronic control units, or ECUs,
have been given partial or total control of more and more
systems, a sizable number of which are safety-critical.

Historically, the auto industry has made safety a prior-
ity requirement of commercial vehicle designs, whether
by choice or by government regulation. However, an
area that has been neglected is the security of the ECUs
that reside within a vehicle. This largely arises from the
fact that the first version of the Controller Area Network
(CAN) protocol, CAN V1.0, which provides a message-
based communication channel for the ECUs to commu-
nicate, was designed in 1983. There have since been up-
dates: CAN V2.0 in 1991, and CAN-FD (Flexible Data-
rate) in 2012. That said, the protocols, at least V1.0 and
V2.0, were largely designed at a time in which security
was not a major concern. To give an idea of the landscape
of CAN V1.0, the Internet was not yet designed, Ethernet
was just introduced (in 1980) and terms such as “virus”
and “worm” were still rare. Furthermore, improving the
security of a widely used protocol also poses problems
for backwards compatibility. Thus even the updated ver-
sions pose problems for security.

An illustration of the problems in the CAN protocol is
evident in recent work where security researchers have
taken advantage of the lack of security measures in the
CAN protocol and demonstrated that an attacker can eas-
ily gain access to particular ECUs, inject CAN pack-
ets (i.e., perform an intrusion based attack), and trivially
cause harm [6, 3].

Our goal in this paper is to study typical attack patterns
and develop a defense that leverages current strides in
machine learning to detect intrusion using an analysis of
CAN packets, and by extension, the general behavior of
the CAN protocol.



We believe this is a particularly important problem to
address as manufacturers continue to add more electron-
ics and we enter into the age of self driving cars with
vehicle-to-vehicle communication. Unlike an attack on
a phone or a computer where the effects are not so se-
vere, an attack on a vehicle is serious as there is a danger
of loss of life. Given that there are already attacks that
erase all evidence after a crash [6], mass surveillance is
an issue being discussed lately, and the fact that vehicles
are distributed systems with multiple manufacturers in-
volved all of whom must be trusted, it is quite crucial to
be able to detect attacks to design better security mea-
sures and build more secure vehicles.

In this paper, we investigate the usefulness of machine
learning in detecting attacks on a CAN bus. Classifica-
tion machine learning algorithms can differentiate data
into separate classes, sometimes better than a human can.
Therefore, we decided to test the performance of apply-
ing machine learning to this problem. There are several
different types of methods for classification, and so we
want to test several and evaluate which have the best per-
formance.

With the above noted, what follows is a brief roadmap
of the paper and our contributions as a result:

• Construct several CAN packet/packet sequence
anomaly detectors based on different Machine
Learning algorithms.

• Consider common attacks on the CAN protocol and
see how well the ML models perform under such
scenarios.

• Provide recommendations for how the anomaly de-
tectors can be used and implemented in practice.

The rest of this paper is structured as follows: In sec-
tion 2, we discuss background information and related
work. In section 3, we describe our approach. In section
4, we present our methods for detecting CAN fuzzing. In
section 5, we give a summary of results along with some
a discussion of the insights gained through the results. In
section 6, we discuss future work. Finally, in section 6
we conclude.

2 Background and Related Work

Automobiles on the road today are controlled by a mul-
titude of small microcontrollers, the ECUs, working in
tandem. These ECUs are bridged together along CAN
lines throughout the car. The ECUs control the major-
ity of modern automobile functionality, from the media
player to locking the breaks.

2.1 Attacks on the CAN Protocol

Recent research has shown that, if given access to a CAN
bus, it is not very hard to forge packets and execute un-
wanted vehicle behavior. Koscher et al. used a technique
called “Fuzzing”, where an attacker sends random pack-
ets and hopes for some sort of system response. The goal
in this attack scheme is to to discover packet combina-
tions that control different ECUs [6]. They showed that,
with a little reverse engineering and fuzzing, it is possi-
ble to gain complete control over an automobile’s ECUs.
They were able to lock the brakes, send arbitrary mes-
sage to the media player and shut the car lights off, all
through CAN packet injection. Even when some sort of
cryptographic key was required by an ECU it was trivial
to crack because of how small the CAN packets are. To
reiterate, CAN was created many decades ago and was
not built with the mindset that an attacker might be shar-
ing the network.

There is still a question of how to get access to a CAN
bus without direct physical proximity. In 2011, Check-
oway et. al demonstrated that various entry attack vectors
can be used in quite innovative manners [3]. For exam-
ple, the authors showed that by using a malicious WMA
audio file, access to the CAN bus can be gained. An-
other example is the use of malicious packets sent to the
Telematics unit with a 3G IRC.

2.2 Machine Learning and Intrusion De-
tection

Recently, Machine Learning (ML) has been gaining in-
creasing attention from the computer science community
in general and the security community as well. One inter-
esting use of ML has been in intrusion detection that use
ML algorithms that are broadly known as anomaly de-
tection, novelty detection or outlier detection algorithms.
These algorithms have been used in applications rang-
ing from detection of DoS attacks [4, 9, 8] to malware
detection by Antiviruses [2]. One interesting example
of these algorithms is “Comparing Anomaly-Detection
Algorithms for Keystroke Dynamics” by Killourhy and
Maxion [5]. In this paper, the authors compare different
ML techniques such as Neural Networks, Support Vec-
tor Machines, k-Means and distance metrics such as the
Mahalonobis distance, for anomaly based detection of
impostors through keystroke dynamics data collected on
typing passwords. As most of these ML techniques are
quite general, i.e., “model-free,” they have been applied
to other areas as well.

2



2.3 Detection of Attacks in the CAN Proto-
col

In relation to the CAN protocol, there has not been much
work in detection of attacks. Taylor et al. demonstrated
in their paper “Frequency-based anomaly detection for
the automotive CAN bus,” that malicious packet injec-
tion of CAN messages can be detected with a reason-
able false positive rate [10]. The paper used a one class
support vector machine (OCSVM) that learns the distri-
bution of a single class of data with features engineered
from the frequency and delay of packets. Noting that
frequency based methods seem to do well, the authors
also mention that a simple hamming distance between
successive packets is not sufficient and that the paper’s
focus is not on identifying anomalies based on packet
content’s themselves. Furthermore, the authors note that
more research is needed to detect non-periodic malicious
packets.

3 Approach

3.1 Security Viewpoint and Threat Model
From a security standpoint, our approach can be de-
scribed using a threat model. The threat model that we
take can be seen through Figure 1 where we illustrate the
attack tree, each of the nodes which we take to be “pos-
sible.” In particular, note that we assume the attacker has
already breached the CAN bus, like in [6]. Thus, we are
assuming that an attacker already has access to the CAN
bus and/or ECU hardware. The next line of defense is de-
tecting when an attacker is performing some form of in-
trusion detection such as fuzzing the bus or trying reverse
engineering. Both of these approaches are taken by an
attacker with the aim of learning CAN packets that can
execute the attacker’s desired commands. The execution
of such commands is ultimately what we want to prevent
and our defense aims to stop the attacker from reaching
this point (the root of the tree). The ML algorithms can
be used to identify anomalous behavior that can be wit-
nessed when the attacker is trying to learn CAN packets
for executing malicious commands or indeed attempting
to execute such malicious packets.

3.2 Machine Learning Viewpoint
Our work looks at how reliable machine learning is at de-
tecting anomalous behaviour on the CAN bus. We tested
this by defining different potential algorithms and test-
ing them against various forms of anomalous behavior.
Thus, our approach from a Machine Learning point of
view is similar to [5], in that we try various Machine
Learning techniques and compare them. We decided to

Execute Desired Vehicle Commands

Learn CAN Packets For Commands

Fuzz the CAN Bus

Access CAN BUS

Reverse Engineer ECU

Access ECU Hardware

Figure 1: Attack Tree

test many diverse kinds of algorithms in order to get an
understanding of what kinds of methods would give us
the most accurate predictions.

Notwithstanding the need for good accuracy, the sim-
pler ML algorithms can also be helpful through the fact
that simpler algorithms can likely more easily be imple-
mented and distributed in the memory and computation-
ally restrictive environments that vehicles posses. On
the other hand, more complex approaches like Neural
Networks can capture nonlinear interactions and mem-
ory based neural networks in particular can use internal
memory that can act as a sort state representation and
capture long term relations in the inputs that are particu-
larly useful in the CAN protocol as different ECUs often
communicate with different frequencies.

3.3 Industry and Operations Viewpoint

We believe that ML techniques are an interesting defense
because CAN buses are typically complex, but relatively
predictable, systems. While it is expected that design-
ers would define acceptable bounds and conditions for
data an individual ECU receives, universally detecting
anomalies in any arbitrary message would require ei-
ther detection and reporting measures for each ECU, or
a high-level supervisor that understands the valid con-
ditions and interactions of every message under every
circumstance. While both options are theoretically pos-
sible, ECU-level action would require time to update
ECUs across a supply chain, as well as trust that contrac-
tors would meet detection and reporting requirements. A
high-level supervisor would in some sense remove the
need to trust many different parties, but the amount of
work and understanding to manually develop such an op-
tion is very high. We believe that a ML supervisor can
solve the manpower issue because ML algorithms could
be taught during the product development and testing of a
vehicle, which should ideally include every realistic con-
dition that could occur in a car.

3



4 Methodology

4.1 Training

For training the different ML algorithms, we require
CAN packet data over a reasonable amount of time and
data that is representative of the general nature of the
CAN protocol.

With the above goals in mind, we obtained CAN
packet data over fifteen minutes from the Michigan Solar
Car Team for a total of approximately 150,000 packets.

The data obtained was in a human readable format that
is not suited for Machine Learning techniques. This is
primarily because the string type features needed to be
encoded as integers, meaning data is lost, and, further-
more, the dimensionality of the human readable data was
about 100. As discussed in prior work, the curse of di-
mensionality is an important issue to be wary of.

To reduce the dimensionality and to get the data in a
better format, the human readable format was converted
to the actual representation of the packets as a UNIX
timestamp followed by eight hex digits representing the
instruction.

Finally, to avoid overfitting and for observing the per-
formance of models that learn using gradient descent
(the Neural Network based models) as they were being
trained, a validation set was used with early stopping.
More specifically, we used 70% of the training data for
training and 30% of the data for validation. The valida-
tion error was measured after every gradient update, i.e.
after every minibatch consisting of 20 packets or packet
sequences in the case of LSTMs. If the error did not re-
duce in the last 50 iterations, the algorithm was stopped
to avoid overfitting.

Now, we discuss the algorithms themselves. The first
algorithm we used was a simple linear One Class Sup-
port Vector Machine (SVM). OCSVMs have been used
in prior work relating to CAN intrusion detection [3] and
thus provide a good baseline. Additionaly, they are more
interpretable in the sense that it is easier to understand
how such models make decisions as opposed to a neu-
ral networks which are harder to inspect. The second
method we tested was the Self Organizing Map (SOM).
Looking at an SOM is useful because it provides the user
with a clear visual comparison of two different inputs and
we can observe clustering as more input is read. The fi-
nal model, in some ways the most complex, we looked at
was a Long Short-Term neural network (LSTM). LSTMs
are very powerful in the sense that they theoretically are
Turing Complete and can thus perform very complex
classifications. However, more practically, using LSTM
allowed us to look at the validity of a packet in context
with the sequence of packets that came before it. Also,
they allow for the prediction of entire future packet se-

quences. While this was not done in this work, we leave
it as an open question of whether prediction multiple
steps ahead can help.

What follows below is a brief introduction to the var-
ious methods along with a few notes about each, in par-
ticular what hyperparameters were used, if any.

4.1.1 One Class Support Vector Machine

Support Vector Machines (SVMs) are a classification
method whereby a decision function is created with the
best separating margin. In other words, the best func-
tion for separating two classes of data is looked for.
One Class Support Vector Machines (OSCVMs) are a
particular variant of SMVs where training is done us-
ing only one class of data. This is especially suited to
anomaly detection as we generally have only data from
the non-anomalous class. This is also the case with the
CAN packets we collected; they all belong to the non-
anomalous class.

SVMs can be used with kernel functions that allow for
more complex decision functions. We tried both a linear
kernel and a non-linear (Radial Basis Function) kernel.
We also varied the hyperparameter ν which controls for
what fraction of the training set can be misclassified or,
equivalently, the number of support vectors (the number
of datapoints on or within the margin generated.) The
closer ν is to 1, the longer the training takes and more of
the non-anomalous packets are allowed to be misclassi-
fied as anomalous packets.

4.1.2 Self Organizing Map

Self-Organizing Maps or Kohonen Maps is a type of ar-
tificial neural network designed to learn a mapping of the
input space of training examples onto a low-dimensional,
discretized map, generally a 2 dimensional square grid,
in an unsupervised manner. The main hyperparameter
we changed was the size of this grid. In particular, we
used 3x3, 5x5 and 9x9 grids.

4.1.3 Long Short Term Memory Neural Network

Long Short Term Memory Neural Networks (commonly
abbreviated as LSTMs) are a recurrent type of neural net-
work particularly well suited to time series data where a
sequence of data is passed as input and predictions about
the future are made. We made use of an LSTM network
with one hidden layer. The hyperparameters we were
interested in were the number of packets to take as in-
put (the fixed size window used during training) and the
number of neurons in the hidden layer. For the former,
we considered 25 and 50 packets and for the latter we
considered 10, 25 and 50 neurons. Finally, it should be
noted that since LSTMs take sequences as input rather

4



than single packets, packet sections were be taken from
the training set and the model was trained to reduce the
error in its prediction of the next packet.

4.2 Evaluating Anomaly Detection
(Testing)

There is an interesting Chicken-and-Egg question that
arises with anomaly detection. In particular, anomaly
detection is quite a peculiar type of problem as we gen-
erally do not know how to judge the performance of an
anomaly detector. This is simply because we don’t re-
ally know what is anomalous; this is the reason we look
to constructing models that can somehow infer the sim-
ilarity within the non-anomalous class and discriminate
anomalous from non-anomalous data.

While the statements above may paint a bleak picture,
all is not lost. Generally, for testing anomaly detectors
we can construct anomalous data based on what kinds of
anomalies generally might arise or on how the anomalies
might be generated.

With respect to the CAN protocol, we look to two dif-
ferent types of anomalies. The first anomalous behaviour
we want to test against is “fuzzing”. Fuzzing is a method
in which random data is sent into a system or network
in order to elicit some sort of response. This a com-
mon and easily-identifiable attack against a CAN bus as
an attacker can reverse engineer the response garnered
from the automobile in question to a packet they sent.
Once they’ve reverse engineered enough valid packets
they have a library of functionality that they can use on
the bus. It is assumed that fuzzing occurs away from the
victim, in a lab where the attacker has access to a car
of the same model. In our defense scenario, we propose
that, if the car detects fuzzing, an alert will be sent to the
manufacturer for further investigation. This defense is a
first time detection system operating under the assump-
tion that someone else has not already fuzzed the target
car and posted the commands to a database on-line. We
think this is a fair assumption given that to our knowl-
edge no wide spread attacker CAN databases exist.

Now, to test for fuzzing, we first need to generate a
dataset consisting of fuzzed data.

One way we did this is simply by using training data
and validation data, i.e., non-anomalous data, along with
a probability p that denotes how many of the hex digits
in an instruction are changed randomly. In other words,
the method of fuzzing we use is to keep the UNIX times-
tamp the same and simply change the hex-digits in pro-
prtion to the probability p. Note that we chose p ∈
{0.1,0.2,0.4,0.6,0.8}. Also, this hex-swapping method
was tested on the algorithms that work on single CAN
packets.

Another way we introduced fuzzing was to add Gaus-
sian Noise to the UNIX timestamps of some packets in
a packet sequence. Specifically, we used an exponen-
tial distribution with scale parameter 100 to generate a
large dataset consisting of packets which consists of a
fuzzed packet on average every 100 packets. The reason
for this choice is that we found that commercial software
in fact uses exponentially distributed packet frequency
bursts to test for the reliability of CAN buses [1]. The
fuzzing of the packets selected by the exponential distri-
bution was done using Gaussian Noise with µ = 0 and
σ ∈ {0.01,0.05,0.1,0.2,0.5,1}. The reason for using
zero-mean is that it is generally quite a good assumption
and furthermore, for timestamps there seems to be no
reason to bias the addition of noise so that packets seem
to arrive before or after when the non-anomalous packet
arrived. The use of different standard deviations was
done mainly to measure the sensitivity of the anomaly
detection modesl. Now, having this large dataset, we
then constructed packet sequences from this dataset just
as in training. And finally, measuring the error in the
prediction of the next packet is used as the metric for
deciding whether a packet sequence is anomalous (the
reasoning for this is that the higher the error, the more
likely the packet sequence probably hasn’t been seen be-
fore and is hence anomalous).

The second form of anomalous behaviour we tested
against was to introduce small groups of misplaced
non-anomalous packets in an otherwise non-anomalous
packet sequence, i.e., we essentially created a dataset
with jumbled non-anomalous data. In this attack scenario
we assume that an attacker has already gained access to
valid CAN commands and is able to send packets to ma-
nipulate the car behavior. This method as well as the
Gaussian Noise addition were only applied on LSTMs
as packet sequences are used as inputs.

5 Results and Discussion

Below we present the results for each of the machine
learning algorithms we tested along with discussions for
what the results suggest in terms of possible implemen-
tations and from a CAN protocol behavior perspective.

5.1 One Class Support Vector Machines

Upon training the OCSVMs, we performed fuzzing with
the hex-changing method. Since we used three differ-
ent values for ν , two different kernels and five different
probability of hex-changing, there are a lot of results we
obtained. However, in summary, we found that Linear
Kernels work quite well, while Nonlinear Kernels gener-
ally take a long time to optimize. We visualized the re-

5



sults with confusion matrices that represent the true pos-
itive/false positive/true negative/false negative data.

The confusion matrices for the best classifier (in terms
of the overall false positive rate being the lowest) we ob-
tained, OCSVM with ν = 0.01 and a linear kernel, is
shown in Figure 2 where a Spectrum color map is used
meaning Purple represent a high concentration or frac-
tion and red represents a low concentration or fraction.
Clearly the concentration of the packets are in the boxes
where the True Label is identical to the Predicted Label
(i.e., the classification is correct.)

Figure 2: Confusion Matrices for best OCSVM model
found

Overall, the above classifier obtained a 7% false posi-
tive rate. Thus, OCSVMs seem to be good classifiers for
detecting anomalous CAN packets. However, we would
like a classifier that can ideally keep being trained and
refined. Additionally, a classifier which provides a prob-
abilistic measure can be useful in determining a thresh-
old for when to notify humans about possible intrusions.
SVMs generally do not allow for these kind of proper-
ties. Also, as more data is used, SVMs generally become
prohibitive in time complexity and require large amounts
of memory which may certainly be a luxury in embedded
systems used in automobiles today.

5.2 Self-Organizing Map

For analyzing the performance of the Self-Organizing
Map, we used the Average Euclidean Distance met-
ric which gives an idea of how the weights are dis-
tributed along the grid. The results for the tests on non-
anomalous packets are given in Figure 3.

Kohonen Avg. L2-Distance Avg. L2-Distance
Map for Non-Anomalous for Non-Anomalous
Dimensions Training Set Validation Set
3 x 3 22.583 131.400
5 x 5 28.344 128.593
9 x 9 31.149 127.411

Figure 3: Avg. L2-Distance Results

As seen in the table, the Average Euclidean Distance
for the Validation set is in general much higher than that
of the training set even though the Validation Set (which
is a fraction of the training set) consists of only valid
packets. This is undesirable in an intrusion detection sys-
tem as this would lead to a very high false positive rate.
It is for this reason that we did not test how the SOM
model handles fuzzing or intrusion detection. That said,
we were also able to get nice visualizations of the clus-
tering effects as shown in Figure 4.

Figure 4: Cue Heatmaps for non-anomalous packets

Shown above are “Cue Heatmaps” where a cue, i.e.,
a CAN packet, is passed through the SOM and the ac-
tivations of the neurons are observed. As can be seen
above, the activations of the first two packets (from the
left) appear the same while the third looks quite differ-
ent. In fact, the first two packets are from the training
set while the rightmost one is from the validation set.
Should the SOM method improve and perform better in
the future, we suggest the use of such visual representa-
tions as they are in some sense easy to interpret and can
provide the passengers in automobiles and OEMs a high
level overview of what the CAN traffic looks like when
intrusion is detected. That said, like with most neural
networks, grasping the semantic meaning of these acti-
vations is an open question.

5.3 Long Short-Term Memory
Firstly, it should be noted that the model we discuss
henceforth is the one with a 25 packet window and 10
hidden neurons. The primary reason for this is training
time. The models with more hidden neurons or a larger
packet window took a long time to train and this can be
prohibitive in embedded systems.

Now, for observing the false-positive and true-positive
rate as a function of the threshold, a common method
is to plot the Receiver Operating Characteristic (ROC),
as done in [10]. The ROC curve essentially arises from
a parametric function that takes in a threshold, observes
the prediction probabilities and calculates the false posi-
tive and true positive rates given the true outputs. Using
this method, we obtain the ROC curves with different
values for the standard deviation in the Guassian noised
timestamps (Figure 5).

One important metric in comparing Binary Classifiers
is the Area under the ROC curve (the AUC). As can be

6



Figure 5: ROC Curves for LSTM Models with Gaussian
Noise Timestamps

Figure 6: ROC Curves for LSTM Models with Mis-
placed Packets

seen in Figure 5, the AUC definitely increases as the vari-
ance in the noise is increased (as one would expect). On
the flipside though, the AUC remains quite high even
when the variance is reduced to near 0. This shows that
the LSTM models are generally quite robust and can per-
form quite well with this kind of fuzzing whereby times-
tamps are changed. What this means is that LSTMs can
be good tools for detecting attacks that rely on times-
tamps or in some sense look to exhausting resources over
a short period of time, such as the Denial of Service at-
tacks. In particular, LSTMs can work quite well to en-
sure a sort of rate-limiting since CAN buses generally
operate with very low bandwidth links (≈ 500 Kbps).

Finally, Figure 6 presents the ROC curves for the mis-
placed packets based anomalies where correct or “valid”
packets were inserted into a sequence of otherwise non-
anomalous packets.

As can be seen in the Figure, the AUCs for the curves
is lower than that of the Gaussian Noised timestamps
dataset. However, in this case, it seems that includ-
ing multiple misplaced packets doesn’t really affect the
anomaly detection much (the AUCs are approximately
the same). This again shows that the LSTM model is
quite robust. That said, a crossover point is apparent
between the green and blue curves. This suggests that
with a more thorough analysis there might be a point un-
til which observing multiple anomalous packets can give
better predictions, but after that the performance reduces.

6 Future Work

Our tests in this paper were done in a simulated envi-
ronment, so the next step for our work is to evaluate our
methods in a live environment. This is an important step
to take because the unique limitations of embedded sys-
tems restrict the computation power available for a ma-
chine learning program. We have access to the Univer-
sity of Michigan’s solar car, which we believe would be
useful for live testing the performance of the different
algorithms because we have access to the true meaning
of every CAN message. We would load our different
trained machine learning algorithms onto a small board,
like a Raspberry Pi, and attach it to the CAN bus of the
solar car. Then, we would simulate fuzzing while the car
was executing regular CAN activity, and deduce whether
our trained algorithm was properly alerting us to the ac-
tive fuzzing. Ultimately, we would investigate ways to
optimize the algorithm for the embedded environment.

A notable variation of our work would be to apply the
machine learning algorithms to detecting anomalies on
a single CAN address, rather than in the stream of all
messages. We believe that this would be a more realistic
application of machine learning because it would reduce
the computational demand of running the algorithm; in-
stead of listening to all messages, including ones that are
unimportant to safety, the algorithm could instead only
monitor safety-critical messages. In addition, a message-
level algorithm would not need to be retaught every time
a message in the car is changed, unlike a bus-level algo-
rithm.

An area for improvement of a bus-level algorithm
would be detecting relationships between valid mes-
sages. While we have investigated the ability to detect
malicious valid commands, our work largely looked at
individual changes in a stream of data, rather than cor-
relations between pieces of the data stream. [7] showed
that a real car is likely to have the same information car
mirrored in different messages. Detecting relationships
between messages would be extremely useful because an
attacker would need to spoof multiple messages. This de-
fense would be especially useful if the relationships be-

7



tween messages are not readily apparent to an attacker,
or even the system designers. However, this type of de-
tection is more difficult because it relies on relationships
between messages that may only hold under certain sce-
narios, and a machine learning technique will likely have
difficulty detecting relationships with acceptable confi-
dence under the constraints of an embedded system.

With regards to the trained models we have as of now,
we haven’t thoroughly tested them to see if there is an
arbitrary way to avoid detection. Further testing on these
models is needed to determine their adequacy for real
world application. There is also other areas to explore in
terms of how we apply our machine learning. For exam-
ple, we can train models for each specific type of mes-
sage, to better detect anomalies as the domain for valid
messages may be more specific.

An important area of work, while not directly related
to our investigations, is determining how to ensure our
defense would work as intended. We briefly proposed
that the automaker could be notified of a suspected at-
tack, which could allow preemptive action to be taken.
However, there are many challenges to ensuring that any
such alerts would not be blocked by an attacker. In addi-
tion, just ensuring that an attacker is not able to remove
any ML defense is another important challenge that we
have not yet investigated.

7 Conclusion

We have shown efficient methods for detecting certain
classes of anomalies on the CAN bus. It is our hope that
car manufacturers could implement a detection scheme
like ours as a fundamental part of the CAN bus. As newer
cars have Internet capability, if fuzzing is detected, the
car manufacturer, and potentially the owner of the car,
could be notified that suspicious activity has occurred on
the vehicle. Coupled with identifying information of the
vehicle, these alerts could assist automakers and law en-
forcement in locating possible attackers and preempt any
attacks.

We stress that, even if the accuracy of fuzzing detec-
tion methods like ours approaches perfect accuracy, the
true security effectiveness of fuzzing defense will be-
come weaker as criminal interest grows in hacking cars
and CAN databases are developed. We believe that our
work can be an adequate defense against fuzzing attacks,
and thus slow the progress of attacks, but our work does
not replace the need for car manufacturers to improve
their security at a more fundamental level.

Attacks on the CAN bus are a dangerous reality, and
we predict their frequency will increase in the coming
years. It is our hope that significant corporate and

academic interest is generated in this field to create pre-
vention and detection methods to stop these potentially
deadly attacks, before a large-scale compromise occurs.

References
[1] RTaW simulator. http://www.realtimeatwork.com/

software/rtaw-sim/. Accessed: 2016-04-03.

[2] BAZZI, A., AND ONOZATO, Y. Ids for detecting malicious non-
executable files using dynamic analysis. In APNOMS (2013),
pp. 1–3.

[3] CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D.,
SHACHAM, H., SAVAGE, S., KOSCHER, K., CZESKIS, A.,
ROESNER, F., KOHNO, T., ET AL. Comprehensive experimen-
tal analyses of automotive attack surfaces. In USENIX Security
Symposium (2011), San Francisco.

[4] CHEUNG, S., AND LEVITT, K. N. Protecting routing infrastruc-
tures from denial of service using cooperative intrusion detection.
In Proceedings of the 1997 workshop on New security paradigms
(1998), ACM, pp. 94–106.

[5] KILLOURHY, K. S., AND MAXION, R. A. Comparing anomaly-
detection algorithms for keystroke dynamics. In Dependable Sys-
tems Networks, 2009. DSN ’09. IEEE/IFIP International Confer-
ence on (June 2009), pp. 125–134.

[6] KOSCHER, K., CZESKIS, A., ROESNER, F., PATEL, S.,
KOHNO, T., CHECKOWAY, S., MCCOY, D., KANTOR, B., AN-
DERSON, D., SHACHAM, H., ET AL. Experimental security
analysis of a modern automobile. In Security and Privacy (SP),
2010 IEEE Symposium on (2010), IEEE, pp. 447–462.

[7] MILLER, C., AND VALASEK, C. Adventures in automotive net-
works and control units. DEF CON 21 (2013), 260–264.

[8] MOORE, D., SHANNON, C., BROWN, D. J., VOELKER, G. M.,
AND SAVAGE, S. Inferring internet denial-of-service activity.
ACM Transactions on Computer Systems (TOCS) 24, 2 (2006),
115–139.

[9] ROESCH, M., ET AL. Snort: Lightweight intrusion detection for
networks. In LISA (1999), vol. 99, pp. 229–238.

[10] TAYLOR, A., JAPKOWICZ, N., AND LEBLANC, S. Frequency-
based anomaly detection for the automotive can bus. In 2015
World Congress on Industrial Control Systems Security (WCI-
CSS) (Dec 2015), pp. 45–49.

8


