
Differentiable Neural Planners with Temporally Extended Actions

Valliappa Chockalingam
Supervised By: Satinder Singh Baveja

Computer Science & Engineering, University of Michigan

Abstract

Deep Reinforcement Learning has brought about var-
ious advances in game or puzzle-like benchmarks that
other traditional AI agents long had difficulty with.
However, the policies learned by the Deep Neural
Networks have usually been reactive policies using
primitive actions of the environment at hand. While
certain components that aid in generalization have
been in recent use, like external memory, other have
largely been missing like explicit long-term planning
computations. Additionally, a general (robust and
“well-generalizing”) artificial intelligence is likely to
need temporally extended actions with a planner that
can decide when, which and for how long to execute
them. In this paper, Value Iteration Networks, deep
neural networks with explicit planning components,
are replicated and analyzed. Then, hierarchies of
planning computations are considered through tem-
porally extended options and simple experiments to
demonstrate the viability of such Differentiable Neu-
ral Planners with Temporally Extended Actions are
described with interpretable results. Finally, some
possible directions for future work are noted.

1 Introduction and
Related Work

Deep Reinforcement Learning (Deep RL or DRL), an
area in which researchers have become increasingly
interested in the past few years, has brought about
various successes in challenging puzzle or game-
related benchmarks [12, 13, 16] and related “real-
world” problems as well [6, 22]; it now allows us to

Figure 1: A Learned Path With Temporally Ex-
tended Actions

solve various problems that would otherwise pose ob-
stacles for traditional AI agents. In particular, Deep
RL allows us to create agents that perform well in do-
mains with the “extremes” of the constituent parts of
a general RL problem [18]: high-dimensional inputs
[12, 13], sparse rewards requiring deep exploration
[2, 17], and with some specific architectures and al-
gorithms, large (possibly continuous) action spaces
[4, 5, 11], and, partial observability [8, 13].

However, while it is clear from the aforementioned

1

Deep RL work that we have developed agents that
can act in complex environments so as to maximize
reward successfully, it is still not clear how much
these agents understand the learned policies and can
generalize. Moreover, most DRL work has gener-
ally led to reactive policies that depend only on some
small portion of the recent states seen and possibly
actions taken. For a general artificial intelligence, the
ability to plan (and construct long term plans in par-
ticular) is most likely quite crucial and is something
largely unexplored in the field.

Recently “Value Iteration Networks” (henceforth
abbreviated VIN at times) were introduced in [20],
dealing with this problem, particularly in the con-
text of learning to plan and generalizing this process
across unseen environments. The main contribution
of the paper is quite unquestionably in its introduc-
tion of an architecture that explicitly includes a dif-
ferentiable planning computation. More precisely,
the authors show that using Convolutional Neural
Networks [9] in a certain way can be viewed as Value
Iteration [18].

Considering multiple such “differentiable neural
planners” or having some other combination of shal-
low and deep looking planners, we naturally arrive at
temporal abstractions and move towards “long-term”
planning. The abstraction of temporally extended
actions, also known as options [19], allows for more
robust agents due to the more coarse-grained nature
of the actors and planners at higher levels of a hier-
archy which don’t have to worry about working with
low-level primitive actions or even, possibly, the high
dimensional “raw” or somewhat preprocessed states.
Meanwhile, the planning and acting at the primitive
level can be handled in the lower levels of the plan-
ning and acting hierarchy. Moreover, using certain
”non-confounding” implementations for the planners
at different hierarchies, like Value Iteration Networks,
allows for some nice and easily interpretable results
(as shown in ??). Here, ”non-confounding” loosely
refers to the fact that figuring out what each neuron
output means or refers to, in the RL setting, is simple.
Thus, the motivation for having such “Differentiable
Neural Planners with Temporally Extended Actions”
becomes clear (The argument here is essentially along
the lines of [14]; division of labour generally leads to

productivity and economic growth.)

In the following sections, VINs are first introduced
along with necessary preliminaries, following [20].
Then, the results of [20] are replicated on a Grid
World domain. Next, some insightful analysis, in par-
ticular, a look at the inferred reward and value func-
tions, and the plans is done; these analyses are not in
[20]. Post that, steps are taken towards incorporating
temporally extended actions into VINs that result in
more robust agents that can construct useful high-
level plans while abstracting away the unnecessary
fine-grained primitive-action based control; namely,
these steps include weakening the assumption that
the transition probabilities take into account local-
ity of actions and adding subcontrollers that execute
temporally-extended actions comprising of the prim-
itive actions while the ”main” or high level controller
works with the temporally extended actions. Finally,
some possible future steps are put forth.

2 Methods

2.1 Preliminaries

Following the standard model for a sequential deci-
sion process, first a Markov Decision Process (MDP)
M is defined by a tuple M = (S,A, R, P, γ). Here, S
is the set of states in the MDP, A is the set of actions
available to an agent, R(s, a, s′) is the reward func-
tion which specifies the immediate reward an agent
obtains by taking action a ∈ A at state s ∈ S and
reaching state s′ ∈ S, P (s′|s, a) is the transition
probability function which specifies the probability of
reaching state s′ by taking action a at state s, and,
finally, γ ∈ (0, 1) is a discount factor [3].

A policy π(a|s), which makes use of the Markov as-
sumption [3], specifies an action distribution for each
state, and, the goal in an MDP is to find policies
that obtain the highest (discounted-)reward in the
long term.

To find such a policy, the notion of the value of
a particular state, s, under some policy, π, is use-
ful. Formally, the value of a state s is the expected
discounted sum of rewards starting from the state in

2

question and following policy π:

V π(s) = Eπ[

∞∑
t=0

γtR(st, at, st+1)|s0 = s] (1)

Here, the expectation is over trajectories of states
and actions, (s0, a0, s1, a1, ...), generated by following
policy π.

Similarly, we can define a state-action value func-
tion, the expected discounted sum of rewards starting
from state s, executing action a, and thereafter fol-
lowing policy π:

Qπ(s) = Eπ[

∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a] (2)

The optimal value function, V ∗(s), is given by
V ∗(s) = max

π
V π(s), i.e., a value function assigning

the maximal discounted reward obtainable from each
state to each corresponding state-value. A policy π∗

is said to be optimal if V π
∗
(s) = V ∗(s) ∀s.

To calculate both V ∗ and π∗, Value Iteration (VI)
[18, 3], a popular Dynamic Programming algorithm,
can be used. After initializing V0 arbitrarily and
choosing some policy π0, we compute a state-action
value function induced by the policy and current
state-value function. Then, we update our state-
value function by taking the max over actions of the
state-action value function for each state.

Vi+1(s) = max
a

Qi(s, a) ∀s where

Qi(s, a) =
∑
s′

R(s, a, s′) + γP (s′|s, a)Vi(s
′)

Finally, we can calculate an optimal policy by tak-
ing the greedy action at each state, i.e., the action
corresponding to the max state-action value for each
state.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [9] are neu-
ral networks that have proved to be very useful in
computer vision and also as part of policy or value

function approximators in Deep RL, one of the first
examples of which was [12].

A convolutional layer generally takes in a 4-
dimensional input where one dimension corresponds
to the batch size, b, another two for the number of
vertical pixels, m, and number of horizontal pixels, n,
and finally the remaining dimension for the number
of channels, c.

The output of a c′-channel convolutional layer
with kernels W 1, ...,W c′ is given by oi′,j′,d′ =

σ

(∑
i,j,d

W d′

i,j,dXi′−i,j′−j,d

)
, where σ is a scalar ac-

tivation function, usually a Rectified Linear Unit
(ReLU) given by f(x) = max(0, x) with derivative
f ′(x) = 1x≥0 where 1p is the indicator function giv-
ing 1 when predicate p is true and 0 if false.

Another type of convolutional layer, which allows
for exponential increases in receptive fields (the size of
the patches associated with each neuron) without any
increase in the number of parameters, is briefly in the
experiments. A convolution with holes, also known
as a Dilated Convolution or a convolution trous, is
useful in scenarios where we would like to keep the
number of parameters low, but enlarge the receptive
field, as described before. To achieve this, the main
idea is to introduce a “rate” parameter, say r. When
r > 1, this convolution samples the input values every
r pixels in the height and width dimensions. This
is equivalent to convolving the input with a set of
upsampled filters, produced by inserting r − 1 zeros
between two consecutive values of the filters along
the height and width dimensions [1]. [21] provides a
more detailed description of such convolutional layers
with figures.

2.3 Value Iteration Module

The VI Module is the planning component of Value
Iteration Networks that implements Value Iteration
(illustrated in Figure 2). What follows is a brief ex-
planation of this module and the insight behind it.
The following section titled “Value Iteration Network
Model” will go into more detail and describe how the
VI module is used in Value Iteration Networks.

The useful insight is that each iteration of VI may

3

Figure 2: Value Iteration Module and Network, from [20]

be seen as passing a reward function image R and
previous value function image Vk through a convolu-
tional layer followed by a max-pooling layer. Passing
Vk and R through a convolutional layer where the
kernels correspond to discounted transition probabil-
ities, we can get a volume where the channels corre-
spond to the Q-function for each action. Max-pooling
depth-wise and then taking that as the new value
function results in an iteration of VI. Now, taking
this new Value Function image with the reward func-
tion image, we can then perform the next iteration of
VI. By repeating this process K times, we effectively
get K iterations of VI.

2.4 Value Iteration Network Model

Following the MDP formulation, let M denote the
MDP of the domain we design policies in. Assume
there is some unknown MDP M̄ such that the optimal
plan in M contains some useful information in about
the optimal plan in M̄ . This idea is to equip policies
with the ability to learn and solve M̄ , and to add
the solution of M as an element in the policy π. This
leads to a policy that automatically learns a useful
M̄ to plan on.

Denote s̄ ∈ S̄, ā ∈ Ā, R(s, a, s̄′) and P̄ (s̄′|s̄, ā) as
the states, action, rewards and transition probabili-
ties in M̄ . To allow for a connection between M and
M̄ , R̄ and P̄ can depend on observations in M , say
φ(s) giving R̄ = fR(φ(s)) and P̄ = fP (φ(s)).

Once an MDP M̄ has been specified, any standard
planning algorithm can be used to obtain the value
function V ∗. Continuing the discussion of the previ-
ous section, we describe the VI module in more detail.

The inputs to a VI module is a “reward image”
R̄ of dimensions m,n, c, where here, for the purpose
of clarity, the CNN formulation is used and it is as-
sumed that the state space S maps to a 2-dimensional
grid though this assumption can be weakened and, or
otherwise, general discrete state spaces can be for-
mulated this way. The reward is then fed into a
convolutional layer Q̄ with Ā channels and a linear
activation function. Each channel in this layer cor-
responds to Q̄(s̄, ā) for a particular action ā. This
layer is then max-pooled along the actions channel
to produce the next-iteration value function layer V̄
where V̄i,j = max

a
Q̄((i, j), ā) and (i, j) indicates the

state corresponding to the row i, column j. The next-
iteration value function layer V̄ is then stacked with
the reward R̄ and fed into the convolutional layer and
max-pooling layer I times for I iterations of value it-
eration.

Now, the vector of values V̄ ∗(s) ∀s encodes all the
information about the optimal plan in M̄ . Thus,
adding the vector V̄ ∗ as features to the policy π is
sufficient for extracting information about the opti-
mal plan in M̄ . However, an additional property of
V̄ ∗ is that the optimal decision π̄∗(s̄) at a state s̄ can
depend only on a subset of the values in V̄ ∗ because

4

π̄∗(s̄) = arg max
ā

∑̄
s′
R̄(s̄, ā, s̄′) + γP̄ (s̄′|s̄, ā)V̄ ∗(s̄′).

Note further that if the MDP has some local connec-
tivity structure, the states for which P (s̄′|s̄, ā) > 0 is
a small subset of S.

Thus, as far as neural networks are concerned, we
are interested in a form of attention, in the sense that
for a given label prediction (action), only a subset of
the input features (value function) is relevant. At-
tention is known to improve learning performance by
reducing the effective number of network parameters
during learning. Therefore, the second element in
VINs is an attention module that outputs a vector of
(attention modulated) values ψ(s).

2.5 Domains

2.5.1 Grid World Domain

The experiments begin with a simple traditional Grid
World domain, similar to the one in [20], that allows
for easy testing of RL agents. In this section, the do-
mains and specificially the state spaces are described.
The action spaces and training regimes are described
in forthcoming sections.

The state observations are three-channel images,
with height and width dimensions 20 x 20, as illus-
trated in Figure 3. Along one channel, the agent posi-
tion is specified (the red pixel), the goal is given along
another channel (the blue pixel), and finally, the ob-
stacles (which agents cannot pass into or through) are
given along the remaining channel (the green pixels.)
The number of obstacles is chosen to be between 0
and 50 and it is ensure that there is always a path
between the agent starting location and the goal.

Figure 3: Illustration of State Observation

2.5.2 Four Room Domain

While the Grid World domain allows for some easy
analysis and is a good starting step for testing RL
agents, given that temporally extended actions are a
focus of this work, another domain that yields more
naturally to testing agents with options is also exper-
imented with.

Figure 4: Illustration of State Observation

As shown in Figure 4, the state observations are
very similar to that of the Grid World domain (33
x 33, 3 channel images.) More specifically, there are
4 rooms in this domain with different openings or
gaps allowing for moving between the rooms. The
number of openings or gaps between any two rooms
is chosen between 0 and 5 (and it is ensured that there
is a path between the starting location and the goal.)
The state observations are the same as those in the
Grid World Domain (three channels corresponding to
the agent position, goal and obstacles respectively).

2.6 Action Spaces and overview of Ex-
periments

The primitive actions in both the Grid World Domain
and the Four Room domains are given by movement
by 1 space in the unblocked (i.e., obstacle-less) 4 car-
dinal and 4 ordinal directions around the agent’s cur-
rent location.

The first experiment tests for a working VIN im-
plementation. In the grid-world domain, we can let
M̄ have the same state and action spaces as the true
grid-world M . However, as will be shown in the re-
sults, slightly increasing the ”internal” number of ac-

5

tions can help in better performance. The reward
function fR ideally maps an image of the domain to
a large positive reward at the goal, and a large neg-
ative reward near an obstacle, while fP can simply
encode the deterministic movements of the grid-world
domain. While these rewards and transitions are not
necessarily the true rewards and transitions we might
use in defining an MDP for the Grid World, an opti-
mal plan in M̄ will still follow a trajectory that avoids
obstacles and reaches the goal, similar to the optimal
plan in M .

Next, in the Grid World domain, an experiment is
done with both the 8 primitive actions (mentioned
before) and an additional 16 options given as all per-
mutations of primitive actions with length 2.

Finally, another experiment is perfomed in the
Four Room domain with temporally extended ac-
tions. In this case, the options are specifically trained
to be ones that learn how to move the agent from any
given room to the nearest gap, or the goal, as shown
in ?? .

2.7 Metacontrollers and Experiments

As described in the previous section, the first ex-
periment with primitive actions is done on the Grid
World domain to test for a working implementation
of VIN. A few more details about this experiment
follow.

For the attention module, we can simply look at the
values of the states corresponding to the states that
are neighboring the state where the agent is located.
However, an even simpler mechanism is possible and
is what is used. We can just look at the state-action
values for the state corresponding to where the agent
is located (and choose actions defined by this distri-
bution.)

The architecture for the VIN for this experiment
uses 150 kernels of size 3×3 with stride 1 followed by
a single kernel of size 3× 3 to get R̄. The transitions
P̄ are defined as 3 × 3 convolutions. We then get Q̄
with Ā channels. After K iterations of VI are done,
an MLP is then used to the (8) primitive actions if
|Ā| > |A|.

As for the K recurrence of the VIN, enough itera-
tions are done to ensure that information about the

goal flows to the state corresponding to where the
agent is located (i.e., at least 1 larger than the floor
of the diagonal.) Finally, a curriculum according to
the distance needed to ”find” the goal through the VI
iterations is also tried. As for baselines, a two-layer
CNN (first layer with 3 x 3 kernels and 250 filters,
second layer with a single 3 x 3 kernel) with tied
weights and the same K recurrence is used followed
by a flattening and MLP to the (8) primitive actions.

The first experiment that is done with temporally
extended actions is a simple one, to test how a VIN
can learn to plan with given options of a fixed length.
In particular, in addition to the 8 primitive actions
(see the section titled Grid World Domain), 16 op-
tions corresponding to the locations reachable with a
sequence of two primitive actions are added, as ex-
plained in the previous section.

Training for such an experiment can be done in dif-
ferent ways; however, the simplest way to do this is to
train a single VIN with 24 or greater channels (corre-
sponding to sum total of available primitive and tem-
porally extended actions) in the state-action value
layer. This controller is termed the base or metacon-
troller. Then, once a non-primitive action is chosen,
we can look at separate subcontroller(s) for the sub-
plan(s). For this Grid World domain experiment, all
that is done is to execute a specific unique fixed set
of instructions corresponding to each option chosen.

For the Four Room domain, this is a bit more com-
plicated. The only differences from the Grid World
domain is that the no primitive actions (only options)
are used in the metacontroller and that the separate
subcontrollers are other VINs, one corresponding to
each option. The options in this domain are chosen
to be the 8 ”player location in room to opening” ac-
tions as well as one ”go to goal” option for a total of 9
options. Thus, assuming the rooms are labeled Room
1, 2, 3, and 4 from the top-left clockwise, these are
temporally extended actions that can be described as,
for example, ”Player located in Room 1 (this is to be
found by the meta-controller and is an assumption to
be made by the sub-controller), move to the Room 2
opening” meaning the action moves the player that is
currently somewhere in Room 1 to the Room 2 open-
ing (to the right of Room 1.) In this scenario, the base
controller is to make complex decisions like which op-

6

tions to take, and in what order as well, in order to
reach the goal the quickest. The sub-controllers on
the other hand just have to do something very sim-
ilar to the VIN in the Grid World domain, find the
shortest path to the nearest opening corresponding
to the option (i.e., if option 5 is one that moves an
agent from Room 3 to the Room 3 / Room 4 gap, and
there are say 3 such gaps, the sub-controller should
both determine which one is the closest and find the
shortest path to it.)

Next, the kernel sizes used for these experiments
which correspond to the discounted transition prob-
abilities are also of interest.

Options generally do not obey local connectivity
(i.e., the discounted transition probability of reach-
ing far by states is not necessarily 0 and, on the
other hand, reaching nearby states is in fact less likely
as option lengths increase.) Thus, we must change
how the transition probabilities are calculated, and,
in particular, weaken any local connectivity assump-
tions.

One obvious way to do this is to increase the size of
the transition kernels. For the Grid World Domain
experiment with the length 2 options, this is quite
trivial. Increasing the kernel width and height to 5
(or using Atrous Convolutions to keep the number
of parameters low, as described in the section titled
”Convolutional Neural Networks”) solves the issues.
This is done and a comparison of each of the tech-
niques can be seen in the results section.

For the Four Rooms domain as well, the metacon-
troller does something very similar. Using a kernel
size such that, from every position in a room, all gaps
between this room and another can be seen suffices.
Thus, the 3× 3 kernels were changed to 20× 20 ker-
nels. However, the subcontrollers continue to use 3×3
kernels (with the 8 primitive actions) as they are still
working in that small temporal scale.

For this problem of non-local connectivity, using
other techniques is also possible. For example, fully
connected layers, while extreme in the number of ad-
ditional parameters, would be a fine solution. Some
others include, for example, Spatial Transformer Net-
works [7] and possibly some modified version of non-
uniform dropout with Fully Connected layers like in
[10].

2.8 Training

Value Iteration Networks are networks whose goal is
to learn to plan. With this goal in mind, there are
various ways to train such agents.

Firstly, there is a choice between using the tradi-
tional RL setting with rewards produced by the en-
vironment after each action, and a supervised setting
where the training signal contains the desired actions
themselves. Secondly, there is a choice between when
to plan and when to act. Lastly, there is also a re-
lated question about how long or deep to plan and
how many actions to take after each planning step.

Considering the focus of this research (into imple-
menting, analyzing and extending VINs through tem-
porally extended actions) and as a starting step, a
simple training regime is used.

Namely, supervised imitation learning is used
where the desired action from each state is given
(from an expert who has computed a shortest path
from the player location to the goal; in the exper-
iments, a simple BFS algorithm is used). Since
temporally-extended actions are just another action
in the base or metacontroller, imitation learning also
provides these action or rather option choices as the
target when it is optimal to execute an option. The
base controller and sub-controllers are thus trained
with the appropriate imitation learning supervised
signals.

Continuining on the description of the training
regime, a reward image is first constructed from the
state using convolutional layers as described in the
previous section. Then, Value Iteration is done for
some I steps where I is large enough such that each
state gets reached by atleast one sequence of actions
from the current state.

After these I iterations of VI, the agent is to pro-
duce just one action. This is sound because in the
training process, as random starting locations and
goal locations are chosen in the various environments
and all state-target action pairs along the shortest
paths are chosen (always keeping the obstacle and
goal locations the same throughout), the training will
lead to plans that are optimal throughout (not just
in the first action or first few actions). So, as a re-
lated note, during training, a success simply denotes

7

a correct choice of the next action to take.
As described before, when a curriculum is used,

the agents get to train first on instances where the
distance between the player location and the goal is
1 (thus requiring just a single action.) Then, after
approximately 1 over the total number of different
type of instances (i.e, the max shortest-path distance
between any starting location and corresponding goal
location), instances of the next difficulty are also in-
troduced. While a curriculum could be considered
based on the number of obstacles (chosen between
0 and 10 during training), this was not done as the
policies are not necessarily affected just by the num-
ber of obstacles (the obstacles could be far off from
the player and goal locations.)

In all experiments, 5000 unique training configura-
tions of the obstacles are used and for each configu-
ration of the obstacles, 10 random starting and goal
locations are chosen to.

For evaluation, 5000 fixed configurations of the ob-
stacles, without overlap with the training set were
used, with 10 random starting and goal locations.
Additionally, evaluation runs I iterations of VI just
like during training. However, unlike training, a full
plan is created until the agent either reaches the goal
within the number of actions a shortest path plan
would take or hits an obstacle before that. Only the
former cases are counted as successes in the accuracy
curves shown in the following section.

Note that in this training regime option termina-
tion maybe an issue with these choices and is left as a
future work. Notably, during evalution, the subcon-
trollers in the two-primitive action terminate after
exactly two actions. In the four room domain exper-
iment, the subcontroller continues to execute actions
until it reaches a state with maximal value. Option
termination is left as a future work.

Now, it is noted here that this kind of training
regime can certainly be tweaked and played around
with (for example by interleaving multiple planning
steps and multiple action or option executions in
more complex domains.) The only non-trivial part
is how to provide a loss for action sequences with
target sequences in the supervised imitation learn-
ing setting. Using trajectory or policy optimization
methods such as Trust Region Policy Optimization

(TRPO, [15]) is one way to approach this.

3 Results

First, VINs are tested and compared with a baseline
CNN as described at the end of the previous section.
Figure 5 shows the evaluation or performance on the
held out test set through the accuracy as defined in
the previous section (full plans are constructed and
said to be successful if the agent reaches the goal
state without hitting any of the obstacles and with
the number of actions exactly equal to that in a short-
est path plan.)

Figure 5: Expanding Mean Accuracy on Test Set

As shown in Figure 5, the baseline CNN does rea-
sonably well (just around 83% accuracy in the plans.)
However, VINs, especially when a curriculum is used
and with the larger number of actions available at the
Q-layer (see the previous section titled ”Training”),
outperforms the baseline CNN.

Now, some analysis of the learned reward and value
functions, with the plans is done.

We see that as intuition would lead us to be-
lieve, the value associated with the goal is set to be
high (see Figure 3 for the starting state observation).
Many of the other neighboring states also have some
high value, but far off states have very small values
in comparison.

8

Figure 6: Value Function Image Example

Figure 7: Reward Function Image Example

In Figure 7, there seems to be something inter-
esting going on. Normally, for ”good” or ”desired”
states, like the goal, we would assign high positive re-
wards. However, it seems that the VIN has assigned a
small reward to the goal and in addition, the neigh-
boring states also seem to have rewards shaped as
such. However, there is a scaling that is applied to
show the above images (to between 0 and 255 for
grayscale pixel values), and the actual rewards may
have very different magnitudes. Upon inspection of
the kernel weights (discounted transition probabili-
ties), it became clear that the negative of the reward
is used. In other words, the VIN has learned to plan
with a punishment or a negative reward based ap-
proach.

Finally, the plan shown in Figure 8 is indeed opti-

Figure 8: Illustration of a Plan

mal as the player only ever uses one square of each
row of pixels as it aims to go up to the goal and
all actions (including the diagonal ones) are taken to
be equally costly which induces a Manhattan metric
(and not a Euclidean one.)

Next, we see the results after adding temporally
extended actions.

Figure 9: Expanding Mean Accuracy on Training Set

In Figure 9 we see that we get reasonable perfor-
mance with the 3×3 kernels, 5×5 kernels and Atrous
3× 3 kernels (the last of which was used with rate 2
giving 7×7 receptive fields). As intuition would lead
us to believe, the 5 × 5 kernels perform better than

9

Figure 10: Expanding Mean Loss Over Testing Iter-
ations

the 3 × 3 kernels. However, while the Atrous convo-
lutions have a larger receptive field, it’s containing of
holes could be the reason for poorer performance.

From the loss curves Figure 10, we see that, even
though the 3 × 3 kernel performs well on the train-
ing set, the loss on the test begins to increase after
a certain point, signifying overfitting. Thus, we see
the effects of using a discounted transition probability
kernel that is not large enough to cover the ”span of
the options” which is 2 (see the section titled ”Meta-
controllers and Temporally Extended Actions”).

Finally, we consider at the Four Rooms Domain.
We get very interesting and optimal plans as shown
in ?? and the results are very similar and positive
to the previous experiments. Visualizations of the
metacontroller’s reward and value functions follow for
a particular state (Note: This one is different from
?? .)

While the reward function Figure 12 seems to be
generally low everywhere except the player location.
The reward appears to also be high around the gaps
and also maybe importanly one square to the left of
the player position. This could signify that the meta-
controller is assigning high reward towards moving
left (which indeed is in the direction closest to the
goal.) Moreover and possibly more significantly, the
value function strongly appears to indicate that mov-

Figure 11: Four Room Domain State Observation

Figure 12: Four Room Domain Reward Function

Figure 13: Four Room Domain Value Function

ing diagonally upward and to the left is the way to
go, and indeed, the option it chooses at this point is
the Room 3 to Room 3 / Room 4 gap.

10

4 Conclusion

Embedding planning into deep learning is an inter-
esting research direction that can be quite fruitful.
As we move towards general AI, having long term
planning is quite crucial. Differentiable Neural Plan-
ners and Value Iteration Networks are useful in their
interpretability and interesting as a first step in their
inherent MDP modeling which fits well in the Semi-
MDP [19] setting as options can be viewed as op-
timal policies in certain variations of the ”primary”
MDP that an agent is evaluated in. However, there
is still work to be done. For example, while the fo-
cus here has been to use VINs as a sort of Neural
Program Interpreter where the actions are programs,
learning options and using memory to store and erase
useful policy embeddings that encode the options is
a very important research area. Additionally, while
end-to-end learning and use of options can help and
there is the disadvantage of needing to specify sep-
arate MDPs to train options, there is the consid-
eration that training multiple controllers separately
can greatly decrease the overall training time through
parallelization. Figuring out how to train large end-
to-end hierarchical neural network based agents or
how to decompose an MDP and finding some ”in-
duced” MDPs that are useful for training options are
also very intriguing research directions.

References

[1] Tensorflow atrous convolution github web-
page. https://github.com/tensorflow/

tensorflow/blob/master/tensorflow/

g3doc/api_docs/python/functions_and_

classes/shard7/tf.nn.atrous_conv2d.md.

[2] Bellemare, M. G., Srinivasan, S., Os-
trovski, G., Schaul, T., Saxton, D.,
and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. arXiv preprint
arXiv:1606.01868 (2016).

[3] Bellman, R. A markovian decision process.
Indiana Univ. Math. J. 6 (1957), 679–684.

[4] Duan, Y., Chen, X., Houthooft, R.,
Schulman, J., and Abbeel, P. Bench-
marking deep reinforcement learning for contin-
uous control. arXiv preprint arXiv:1604.06778
(2016).

[5] Dulac-Arnold, G., Evans, R., Sunehag,
P., and Coppin, B. Reinforcement learn-
ing in large discrete action spaces. CoRR
abs/1512.07679 (2015).

[6] Gu, S., Holly, E., Lillicrap, T., and
Levine, S. Deep reinforcement learning for
robotic manipulation with asynchronous off-
policy updates. arXiv preprint arXiv:1610.00633
(2016).

[7] Jaderberg, M., Simonyan, K., Zisserman,
A., et al. Spatial transformer networks. In
Advances in Neural Information Processing Sys-
tems (2015), pp. 2017–2025.

[8] Lample, G., and Chaplot, D. S. Playing fps
games with deep reinforcement learning. arXiv
preprint arXiv:1609.05521 (2016).

[9] LeCun, Y., and Bengio, Y. Convolutional
networks for images, speech, and time series.
The handbook of brain theory and neural net-
works 3361, 10 (1995), 1995.

[10] Li, Z., Gong, B., and Yang, T. Improved
dropout for shallow and deep learning. arXiv
preprint arXiv:1602.02220 (2016).

[11] Lillicrap, T. P., Hunt, J. J., Pritzel, A.,
Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. Continuous control
with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015).

[12] Mnih, V., Kavukcuoglu, K., Silver, D.,
Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. Human-
level control through deep reinforcement learn-
ing. Nature 518, 7540 (2015), 529–533.

11

[13] Oh, J., Chockalingam, V., Singh, S., and
Lee, H. Control of memory, active percep-
tion, and action in minecraft. arXiv preprint
arXiv:1605.09128 (2016).

[14] Rodriguez-Clare, A. The division of labor
and economic development. Journal of Develop-
ment Economics 49, 1 (1996), 3–32.

[15] Schulman, J., Levine, S., Moritz, P., Jor-
dan, M. I., and Abbeel, P. Trust region
policy optimization. CoRR, abs/1502.05477
(2015).

[16] Silver, D., Huang, A., Maddison, C. J.,
Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al.
Mastering the game of go with deep neural net-
works and tree search. Nature 529, 7587 (2016),
484–489.

[17] Stadie, B. C., Levine, S., and Abbeel, P.
Incentivizing exploration in reinforcement learn-
ing with deep predictive models. arXiv preprint
arXiv:1507.00814 (2015).

[18] Sutton, R. S., and Barto, A. G. Reinforce-
ment learning: An introduction, vol. 1. MIT
press Cambridge, 1998.

[19] Sutton, R. S., Precup, D., and Singh, S.
Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1 (1999), 181–211.

[20] Tamar, A., Levine, S., and Abbeel, P.
Value iteration networks. CoRR abs/1602.02867
(2016).

[21] Yu, F., and Koltun, V. Multi-scale con-
text aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015).

[22] Zhu, Y., Mottaghi, R., Kolve, E., Lim,
J. J., Gupta, A., Fei-Fei, L., and Farhadi,
A. Target-driven visual navigation in indoor
scenes using deep reinforcement learning. arXiv
preprint arXiv:1609.05143 (2016).

12

