What Can We Learn About the Real-World
From The Internet?

Chanyu An, Valliappa Chockalingam, Jay Soni
January 26, 2017

Contents

1 Introduction

2 The Model

3 An Extension: Modeling Real World Trends

4 Results
4.1 SingleEvent
4.2 PeriodicEvent
4.3 Random Behavior

5 Conclusion

6 Python Code
6.1 Simple Iterative Solution,
6.2 Multivariate Regression o0

1 Introduction

On an average day, the Google search engine performs 5.9 billion different search
queries. When deciding to search for a certain topic, people have several fac-
tors influencing them, including information from their personal lives as well as
information from the world around them. In this paper, we discuss our model
to predict peoples’ searching behavior patterns by quantifying only a few dif-
ferent variables. Our model included using Systems Dynamics in NetLogo to
figure out the relationships between real world information and the searching
patterns of people over time. The searching trends that we modeled were com-
pared to actual searching trend data found on Google Trends. Conversely, we
wrote scripts in Python to take graph data from Google Trends and figure out
the exact values of the variables in our model that form the data found in the
Google Trends graphs.

2 The Model

To model what we want, we used Netlogo function named System Dynamics.
Since there are many variables linked to each other, it is simpler to use System
Dynamics than use normal agent-based model. In normal agent based model, it
shows data from interaction between individual agents that has own behaviors.
For example, in Wolf and Sheep Prediction, we gave rules to each Wolf, Sheep,
and Grass, and the model gave us data from interaction between these agents.
However, System Dynamics works different way from this. It does not give
behavior to individual agent, but it shows how the whole group of agents moves.
For example, System Dynamics will program how population of wolf, sheep, and
grass increase or reduce as a whole.

A
e sim nean] AN
Loerzien]

A
‘ information_stimulus_ad

N

< influence_strength_m

<‘ influence_atrength_ad population_seen ‘

I
‘ population_aearching

In our model, population that searched something on the internet will change
according to variables that we set. As you can see on a diagram, we made

6 variables to figure out population that searched something on the internet.
Info_stimulus means how information stimulates people, if info_stimulus is very
high, and then people have more chance to face this information in their normal
life. For example, if a war break out somewhere on the earth, people will hear
about the war from news or friends. It is very easy to be exposed by these
kinds of information. In this case we can say that info_stimulus is very high.
However, another snow day of Michigan, will not be reported heavily on the
news, so in this case info_stimulus is very low. We made info_stimulus_mean
and info_stimulus_sd(standard deviation) to give some random behavior to this
variable. Also, we made variables about periodicity. Periodicity means how
often the event occurs. For example, Olympic held once in 4 years. In this
case, periodicity is 4 years. How_periodic means that how strictly the event
follows periodicity. As I mentioned, Olympics are held once in 4 years strictly,
there is no other option for it. In this case, how_periodic is 100. However,
Pink Floyd might release its new album in 5 years but it also can be faster or
longer. In this case, how_periodic will be pretty low. With these 4 variables, we
can estimate population_seen, which means how many people have heard about
the information. However, not all the people who heard about the news search
about it on the internet. Some people might not have enough interest to search
about the topic in the internet. We made influence_strength to adapt this idea.
If influence_strength is very high people will more likely search the news on the
internet. War new might attract a lot of people’s attract, and it will have high
influence_strength, but new Pink Floyd album will only attract people who have
an interest in Pink Floyd, and in this case influence strength is going to be low.
Just like what we did to info_stimulus, we made influence_strength_mean, and
influence_strength_sd(standard deviation) to give some random behavior. At
last, we can get population_searching from these 6 variables.

3 An Extension: Modeling Real World Trends

The model by itself allows for setting the few variables mentioned above (in-
formation stimulus mean, information stimulus standard deviation, periodicity,
how_periodic, influence strength mean, and influence strength standard devia-
tion). To make the model more useful and to really understand real world trends,
we had to go on to collect data from our model by varying the variables. Net-
Logo’s BehaviorSpace is made exactly for this. Using NetLogo BehaviorSpace,
we were able to collect the ”population_searching” and the ”population_seen” at
regularly sampled intervals of time. NetLogo’s measure of time is ”ticks.” There
doesn’t really seem to be a correlation between ”ticks” and any standard unit of
time. So, we decided to plot the ratio ”population_searching/population_seen”
about every 100 ticks (using modular arithmetic and a global counter. We then
used these intervals to signify a month, as this is what Google® Trends ”csv”
(comma separated values) files use. The code for a major portion of this code
(which appears in the 'go’ procedure) is given below:

go
set global_counter global_counter +
if (global_counter mod 12 = 0)

[

tick plot population_searching / total_population
set total total + population_who_search set average total / ticks
]
find_population_seen
find_population_search
if (global_counter mod (180 * 12) =0)
[
set average total / ticks
stop

]

Now, with a ”time unit” chosen, we went on to run the BehaviorSpace.
There was still the question of what variable values to use. Initially, we took
the following values:

Variable Starting Value | Increment | Ending Value
Information Stimulus Mean 0 10 100
Information Stimulus Standard Deviation 0 5 20
Influence Strength Mean 0 10 100
Influence Strength Standard Deviation 0 5 20
Periodicity 0 6 12
How Periodic? 0 10 100

Now, with these configurations, the BehaviorSpace had a negative number
of runs. This is likely due to the fact that there was an overflow caused by
the computer being unable to express the number of runs within a standard
integer/double.

So, we reduced the variable ”Sampling Space” to be more narrow:

Variable Starting Value | Increment | Ending Value
Information Stimulus Mean 0 20 100
Information Stimulus Standard Deviation 0 5 20
Influence Strength Mean 0 20 100
Influence Strength Standard Deviation 0 5 20
Periodicity 0 6 12
How Periodic? 0 20 100

Once the simulations completed in about five hours, we started trying to
model "real world trends.” What we tried to do was get some graph from Google
Trends® and then use data collected from the model to approximate what vari-
ables would need to be set at for that behavior.

For this, we ended up using Python. Initially, using a simple iterative solu-
tion whereby the script would go through the file with the data we generated
from BehaviorSpace and simultaneously over the file from Google Trends® and
use the squared differences of the Google Trends®) data of proportion of people
searching (compared to the point where most people searched for a topic) and
the ”Population Searching” as a fraction of the total population was found. So,
using the least squares method, we were able to find the set of values with the
least deviation from the values obtained from Google® Trends. This method
works quite well, however, it was very time consuming (took nearly 15 minutes
for every graoh we tried) and had some pitfalls (like the need to align the time’s
and random graph were just recorded mostly as noise).

To make the analysis faster, we made a few optimizations like analyzing the
number of peaks in the graph and comparing it to the total number of data
points we have (in the Google® Trends data). Another optimization was to
pick sets of data that would likely contain the variable configurations we are
looking for (start from the first data set obtained from BehaviorSpace, then
check the least squares difference, store the least squares difference (the average
of the least squares at each point in time), look at random data set or jump to
a data set that likely contains more accurate variable configurations and then
repeat the process.

The above optimizations did certainly help, but what really made the run
time decrease and the algorithm ”smarter” was to use multivariate regression
and machine learning. Using NumPy (Python’s numerical analysis package), we
used a multivariate regression tool given by them with 7 independent variables
(time, Information Stimulus Mean and Stadard deviation, Influence Strength
Mean and Standard Deviation, and Periodicity and How Periodic, along with
one dependent variable, the proportion of people who search to the total popula-
tion. Following this, we also tried using machine learning to train the computer
to be able to recognize graphs; this was considerably more challenging, but, we
did get quite accurate results, and with more time and expertise or help from
people more familiar with machine learning, the algorithm we used could be
made more efficient and accurate.

With all the above said, we then went on to use actual Google®) Trends data
and see how well the model did. After much trial and error and modifications to
the algorithm, we think we have arrived at an accurate model with an accurate
algorithm for modelling real world data. These results are given in the next
section.

4 Results

To model the searching trends for the Ice Bucket Challenge, we took into account
that the periodicity for this keyword was low due to the fact that this was a
single event.

4.1 Single Event

Popularity of Keyword: Ice Bucket Challenge as Popularity of Keyword: Ice Bucket Challenge,
modeled by NetLogo (Best Fit) Google® Trends

1] 100 - 100

Z 3 75 s 3 75

S 533

2 B 25 a & 25

o =]

1 a

l
1

Time
Time

A search trend for a single event involved people searching for something that
has a popularity that generally rises once, peaks, then steadily declines. This
behavior represents an event that happens one time with rising popularity lead-
ing up to it, or a fad. An example of this that we used for our model was the “Ice
Bucket Challenge”. Over the summer of 2014, the ALS Ice Bucket Challenge
was a challenge that people took on social media websites where they posted
videos of them getting a bucket of ice poured on their heads to raise awareness
for Amyotrophic Lateral Sclerosis (ALS). Prior to the summer of 2014, the data
on Google Trends showed that there were very few searches for the keyword “Ice
Bucket Challenge”. Once popularity for the challenge increased, the number of
searches for the keyword went up dramatically.

However, as people stopped doing the ice bucket challenge, the number of
searches started going back down. Since this was not a repeating event, we only
see this behavior one time on the Google Trends data for this keyword.

To model the searching trends for the Ice Bucket Challenge, we took into ac-
count that the searching trends would not be very periodic due to the fact that
this was a single event. However, our model model’s this behavior by having a
rather large period with a very large ”How Periodic”, so that there would be a
peak sometime in the timeline, but not anywhere after that.

4.2 Periodic Event

Popularity of Keyword: Fifa World Cup, as Popularity of Keyword: Fifa World Cup,
modeled by NetLogo (Best Fit) Google® Trends

100 100
8T 75 2835 75
§22 522
ggs ggs *
P8 = | £28 =

0 - LY SR = "L 0 m— S ERE . s

Tima
Time

Search trends for periodic events consist of peoples’ searching behaviors for a
certain topic repeatedly rising and falling over a certain time period. In our
model, we decided to use the example of the FIFA World Cup, a very popular
event worldwide that occurs every four years. Due to this event gaining massive
worldwide popularity every four years, the search behavior graphs on Google
Trends undoubtedly show peaks in the number of searches in 2006, 2010, and
2014, which are all years in which the FIFA World Cup occurred.

When we modeled the searching trends for the FIFA World Cup in NetL-
ogo, we made this keyword very periodic since the event repeats every four
years.Therefore, this model will have periodicity of 4 years and periodic effect
of 100, since there is no other case that the FIFA World Cup is not held in
every 4 years. Also, World Cup is the most popular sports event in the world,
therefore, it will have very high information stimulus mean and low information
stimulus standard deviation.

4.3 Random Behavior

Popularity of Keyword: QAZWSX as modeled Popularity of Keyword: QAZWSX, Google®
by NetLogo (Best Fit) Trends

= 90 100
8% o

£ 675 8T 715
= @
Za S35

€8 45 S.. 8 50
35 883

§ ¥ 225 acw 26

a2 0

Time

Time

Random search behavior involves trends for queries for “unimportant” keywords
to the general population. One example of this is a search for the keyword
“chair”. While a search for a chair may be important to some person at any
given moment in time, searches for a chair are not periodic, nor are they related
to a event, which will therefore make the search trends graph exhibit “random”
behavior. If there was to be a high profile murder involving a chair used as the
murder weapon, the graph would no longer exhibit random behavior, and look
more like the Single Event search graph.

To illustrate the concept as closer to being truly random behavior, we used
the search keyword “QAZWSX” in our model. The various peaks in the Google
Trends data for this keyword shown above do not have any notable ”information
stimulus” relating to them. Since it is random, it also does not have notable
periodic effect.

5 Conclusion

Our model allowed us to generally predict peoples’ searching behaviors based on
only the characteristics of information, influence, and periodicity. By knowing
this information, we could apply our results to various fields, such as marketing
and social psychology.

Our model could be used by a marketing group to figure out what will make a
company’s desired audience search for various keywords, in order to eventually
drive more sales to the company. Moreover, a marketing group could use this
model to figure out the searching behavior of their desired audience to improve
the company’s search engine optimization techniques.

From a social psychological standpoint, this model could be used to describe,
predict, and explain the spreading of information. Since Google search trends
are a general representation of the information that the general population
knows, this model could help to learn about why certain information spread
the way that it did, as well as to predict how certain information, such as a
tabloid rumor, will spread in the future.

In public policy, if an elected official can know the 6 variables of a current
event from our model, that information will be useful when making a policy
decision. When we want to boost up or slow down the spread of information,
the model can help to find the variable that we have to change to get the result
that we want. And then, the elected official can make policy depending on the
variable that we need to change.

Our model currently only uses Google Trends data, but our quantification of
the factors that influence searching behavior is an example that can be applied
to many other types of behavior in the real world other than only searching be-
havior. So, we could certainly expand this model to be used in areas described
above as well as some more which we might not have even thought about.

10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

6 Python Code

6.1 Simple Iterative Solution

import ¢

SV

f = open('/Users/Valli/Proj3SystemsDynamicsFinal.csv') ''' Path to NetLogo BehaviorSpace File'''

g = open('/Users/Valli/Downloads/report-3.csv') ''' Path to Google Trends File''"'

reader_f

= csv.reader(f)

reader_g = csv.reader(g)

counter

=1

loop_counter = 0O

curr_dic

dictionary

peaks_li

tionary = {}

{3

st = {}

def mean_func(dictionary):
total = 0.0

for

i in range(0, len(dictionary)):
total = total + dictionary[il

return total / len(dictionary)

def sd_f

unc(dictionary, mean):

total_sd = 0O

for

i in range(0, len(dictionary)):
total_sd = total_sd + abs(dictionary[i] - mean)

return pow(total_sd / len(dictionary), 0.5)

def peaks_func(dictionary, mean, peaks_list):

numo

fpeaks = 0

peaks_list = []

for

if (1

i in range(1l, len(dictionary) - 1):

if(dictionary[i] > mean + 0.25 * mean and

dictionary[i + 1] < dictionary[i] and dictionary[i - 1] < dictionaryl[i]):
numofpeaks += 1

peaks_list.append (i)

en(peaks_list) < 2):

return [numofpeaks, 0]

peak_distance_total = 0O

for

i in range(0, len(peaks_list) - 1):
peak_distance_total += peaks_list[i + 1] - peaks_list[i]

return [numofpeaks, (peak_distance_total / numofpeaks)]

g =1{}

11

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

for row in reader_g:
if (len(row) == 0 and loop_counter > 3):
break
if (len(row) > 0):
if (row[0] [0] .isdigit()):
glloop_counter] = float(row[1]) / 100.0
loop_counter += 1

loop_counter = 0O

for row in reader_f:
if row[0].isdigit():

if int(row[0]) == counter and loop_counter < len(g):
curr_dictionary[loop_counter] =
(float(row[8]) - float(glloop_counter])) *
(float(row[8]) - float(g[loop_counter]))
loop_counter += 1

if int(row[0]) != counter or loop_counter >= len(g):
curr_mean = mean_func(curr_dictionary)
dictionary[counter] = [curr_mean, row]
counter += 1

loop_counter = 0

best = float("inf")

index = 0

for i in range(l, len(dictiomary)):
if dictionary[i] [0] < best:
best = dictionary[il

index = i

print best[1]

12

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

6.2 Multivariate Regression

import csv

f = open('/Users/Valli/Proj3SystemsDynamicsFinal.csv')

import numpy as np

reader_f = csv.reader(f)

[
x =[]

<
[

counter = 0

loop_counter = 0O

for row in reader_f:
if row[0].isdigit():
if int(row[0]) == counter:
y .append (float (row[81))

x.append([row[1], row[2], row[3], row[4], row[5], row[6], row[7]]1)

loop_counter += 1
if int(row[0]) != counter:
counter += 1

loop_counter = 0O

X = np.column_stack(x + [[1]*len(x[0]1)]1)

beta_hat = np.linalg.lstsq(X,y) [0]
print beta_hat

13

