
Training Game-playing Agents through Deep Q
Learning

Valliappa Chockalingam, Hongyuan Ji, Nan Wu
Department of Electrical Engineering and Computer Science

University of Michigan
valli,hongyji,wunan@umich.edu

Abstract

Using reinforcement learning successfully in domains with high dimensional sen-
sory input in a model-free manner poses a difficult task; agents must be able to
both derive efficient representations of the input and generalize from past experi-
ence to new experiences. In this paper, we replicate Deep Q-Learning networks,
proposed by Google DeepMind [1, 3], which allow for the creation of artificial
agents capable of learning successful policies for playing Atari games with near or
better than human-level control through spatio-temporal visual input. The prob-
lem of exploration vs. exploitation is then discussed. In particular, we look at
autoencoders for learning good representations of state and thus providing reward
bonuses for visiting unexplored parts of the state space, as done previously by
Stadie et al [2]. We finally evaluate how the use of denoising autoencoders can
affect exploration.

1 Introduction

Learning from high-dimensional raw sensory data to control agents has been a long standing chal-
lenge of reinforcement learning (RL). One way to handle the large state spaces that are common
to computer vision and speech recognition type tasks is to use hand labeled features. However,
hand-labeled features can be highly domain dependent and there is a question of how to get such
features.

Artificial Neural Networks (ANNs) are a commonly known method for function approximation
and hence machine learning. However, for many decades, their use was negligible in complex
reinforcement learning domains because computational costs of using ANNs with many thousands
or millions of hidden units were prohibitive. With Moore’s law meaning that ”harder” problems are
easier to solve, we have been seeing a major interest in deep learning in the past few years.

Recently, Deep Q-Learning Networks has been shown to successfully ”learn human-level control
policies from high-dimensional sensory input using reinforcement learning” [1]. These methods
have in particular been used to play video games, particularly Atari 2600 games. The main idea is
to use a convolutional neural network that takes in preprocessed frames from the game and train the
network with a variant of the Q learning algorithm. In addition, a separate target Q-network is used
to delay the Q-value function updates and limit divergence and an experience replay mechanism
is implemented to randomly sample previous transitions and avoid the correlation of using similar
frames from same parts of the state space.

What follows is a description of how to replicate DQNs and arrive at the results previously published
[1, 3]. We then discuss the common RL problem of exploration vs. exploitation particularly through
the use of exploration bonuses using autoencoders [2]. Finally, we evaluate how modifying the
autoencoder to a denoising one affects performance.

1

2 Preliminaries

The task of learning policies for playing Atari games can be modeled as an infinite horizon Markov
Decision Process (MDP) [2], defined by a tuple (S,A,P,R, γ). Here, S is a finite set of states. A
is a finite set of actions. P : S × A × S → R gives the probability of transitions to different state
given that a particular action is taken at a given state. R : S → R. Finally, γ ∈ (0, 1) is the discount
factor that represents how much future rewards are weighted in comparison to immediate rewards.
The aim is to find a policy π : S × A → [0, 1] that maximizes expected reward. This maximization
can be done using different reinforcement learning algorithms.

2.1 Q-Learning

Q-Learning is a model-free reinforcement learning technique that can find an optimal action-
selection policy for any given (finite) Markov decision process (MDP). Learning the policy is done
through estimation of an action-value function, Q, which is the the expected utility of taking a given
action in a given state and following the optimal policy thereafter.

The core of Q-Learning algorithms is a value iteration update of the following form

Qt+1(st, at) = Qt(st, at) + αt(st, at) ·
(
Rt+1 + γmax

a
Qt(st+1, at)−Qt(st, at)

)
where st and st+1 are the states at time t and time t + 1 respectively, αt(st, at) is a possibly
time, state and action dependent learning rate and Rt+1 is the immediate reward received upon
performing action at in state st.

2.2 Convolutional Neural Nets

A Convolutional Neural Net (CNN) is a type of feed-forward ANN whose architechture is particu-
larly suited to capturing features in visual input that are modeled after visual mechanisms in living
organisms particularly that the cells in eyes are responsible for detecting light in small, overlapping
sub-regions of the visual field, called receptive fields. More about such architectures can be found
in [8].

3 Related Work

Previous work has shown that model-free reinforcement learning algorithms like Q-learning, which
represent the action-value function with a non-linear function approximator, such as a neural net-
work, become unstable and even diverge [5]. Therefore, a majority of efforts in reinforcement
learning focused on adopting linear function approximators, on purpose of better convergence.

However, some stable method exist for training neural networks under the framework of reinforce-
ment learning, in particular, neural fitted Q-learning (NFQ) [6]. NFQ involves the repeated training
of networks de novo on hundreds of iterations. Thus, NFQ can be inefficient for use with large
networks. On the other hand, Deep Q-Networks, introduced by Mnih et al [1], applies reinforce-
ment learning end-to-end, capturing features from raw visual inputs that may be directly relevant to
discriminating action-values. In addition, the DQN method uses a stochastic gradient descent based
optimization that only has a low constant cost per iteration, making such an approach scalable to a
large state spaces with possibly many millions of iterations.

Since the paper that proposed the idea of DQNs, many other papers have looked at how to improve
the performance of DQNs on the Atari games benchmark [1, 3]. One in particular that we will
be focusing on is the paper titled ”Incentivizing exploration in Reinforcement Learning With Deep
Predictive Models” by Sadie et al [2].

2

4 Methodology

4.1 Deep Q-Network

Deep Q-Networks are networks that, as the name suggests, perform Q-Learning using neural net-
works. In the Atari games domain, a CNN architecture can be used to approximate a Q-value func-
tion for the game being played using representations of the frames as state. The architecture used in
the paper that introduced DQNs is shown below in the output of the program used for training DQN
agents.

1 nn.Sequential {

2 [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) ->

3 (8) -> (9) -> (10) -> (11) -> output]

4 (1): nn.Reshape(4x84x84)

5 (2): nn.SpatialConvolution(4 -> 32, 8x8, 4,4, 1,1)

6 (3): nn.Rectifier

7 (4): nn.SpatialConvolution(32 -> 64, 4x4, 2,2)

8 (5): nn.Rectifier

9 (6): nn.SpatialConvolution(64 -> 64, 3x3)

10 (7): nn.Rectifier

11 (8): nn.Reshape(3136)

12 (9): nn.Linear(3136 -> 512)

13 (10): nn.Rectifier

14 (11): nn.Linear(512 -> 6)

15 }

A description of DQNs in relation to the above architecture now follows. Evaluation of DQNs and
questions related to model selection will follow later. First, a few steps of preprocessing are done to
reduce the input dimensionality and ensure that the frames provide a good representation of state.
In certain games, some objects appear only in every other frame as the Atari 2600 had a limit on the
number of sprites that can be displayed at a time. To account for this, at time t, each pixel color value
is taken to be the maximum of the pixel color value at time t− 1 and the pixel color at time t. These
”corrected” frames are then downsampled from the Atari 2600’s screen resolution of 210×160 to
84×84. A conversion from RGB colorspace to YUV followed by removal of the U and V channels
is also performed to extract the luminance of the frames. This completes preprocessing and thus, we
now have the 4 frames that are passed into the CNN as input.

The CNN consists of three convolutional layers. The first convolutional layer consists of 32 filters
with a 8 × 8 kernel and a stride of 4. The second convolutional layer consists of 64 filters with a
4× 4 kernel and a stride of 2. The third convolutional layer consists of 64 filters with a 3× 3 kernel
and a stride of 1. To allow for the capturing of non-linearities, after each convolutional layer, we
use a rectified linear unit (ReLU) which performs f(x) = max(0, x). The last convolutional layers
output (after passing through a rectifier) are reshaped into a set of linear neurons and a linear layer
to 512 neurons follows. Finally, a linear layer to the output follows. The size of the output layer is
game dependent, but it is equal to the number of actions available in the game. Running the emulator
forward for one frame step requires much less computation than having the agent select an action by
a multiple forward passes on the neural network when the output is of size 1, such technique allows
the agent to play approximately k times more frames of games without significantly increasing the
total runtime.

There are two remaining parts to the DQN architecture. The first is the use of experience replay. At
each time step, an experience tuple et = (st, at, rt, st+1) is stored into a ”replay memory” dataset
D of size 106. During learning, we apply Q-learning updates, on samples or minibatches of stored
experience (s, a, r, s′) ∈ D, drawn uniformly at random from the pool of stored samples.

The second is the use of a separate target Q-network. Every 50000 steps the network Q is cloned
to obtain a target network Q̂ and Q̂ is then used for generating Q-learning targets for Q in the next
50000 steps. In the Q-learning updates, a mini-batch size of 32 is used with the following sequence
of loss functions:

L(θi) = Es,a,r
[
(Es′ [y|s, a]−Q(s, a; θi))

2
]

∇θiL(θi) = Es,a,r,s′
[(
r + γmax

a′
Q(s′, a′, θ−i −Q(s, a; θi

)
∇θiQ(s, a; θi)

]
3

In addition, the rewards returned by Atari emulator is clipped for generalization. As the scale of
scores varies vastly between different games, all positive rewards are clipped at 1 and all negative
rewards are clipped at -1, leaving 0 rewards unchanged. Such modification limits the scale of the er-
ror derivatives and also makes a single learning rate more robust across multiple games. Meanwhile,
a drawback of this modification is that the agent cannot differentiate rewards of different magnitude,
potentially influencing performance.

Following the same procedure as proposed by [7], a simple frame-skipping technique is also used.
Specifically, the agent perceives and selects actions on every kth frame instead of every frame, with
the last action repeated on skipped frames.

To conclude, we discuss a few other key points and hyperparamters of the architecture, a full list of
hyperparameters can be found in [1]. For updating the weights of the networks, RMSProp (proposed
by Geoffrey Hinton but unpublished) is used. Action selection is done using an ε-greedy policy. This
means that with probability ε, a random action is chosen and with probability 1 − ε, the action that
corresponds to the highest Q-value is chosen. epsilon is linearly interpolated from 1 to 0.1 over the
first 106 steps (actions). Finally, the model is trained for 5 × 106 iterations. Note that this is less
than the 5× 107 steps used in [1].

4.2 DQN with Reward Bonuses

To incentivize exploration, the agent can be rewarded bonuses for visiting novel parts of the state
space. Using the frames that the CNN gets as input in a novelty function is however problematic as
the state space induced by the frames themselves is very large. Thus, the use of encodings has been
suggested [2]. An autoencoder is a type of neural network whose aim is to reconstruct it’s inputs.
The architecture proposed in [2] to produce encodings is as follows

Figure 1: Autoencoder network

As can be seen above, the input to the autoencoder takes as input a flattened frame (note that
84 × 84 = 7056). The frame passes through multiple fully-connected linear layers until it reaches
a bottleneck at 128 units. Then, the frame passes through larger and larger hidden layers until the
output layer which has the same size as the input layer. Thus, the inner layers capture encodings of
the frames, and hence the state.

To be able to use the above described autoencoder for incentivizing exploration, we can come up
with a model learning architecture that takes in the encoding of a state and the action performed in
that state and gives a prediction for the encoding of the next state. The error in this prediction is
presumably low when if we are in part of the state space we have visited often and high if we are in
part of the state space which we have not visited or not visited often. Hence, we can come up with
an error measure for this prediction and a method for awarding reward bonuses for exploration.

Let σ(s) be the autoencoder’s output at the sixth layer (the one circled in the diagram) given that s
is passed as input. In other words, we are using the 500 units of the sixth layer as the encoding of
state.

LetMφ be the output of the model learning architecture which takes in the encoding of a state and
the action taken in that state. The model learning architecture is given by a very simple feed-forward
network. It takes in a vector of size 518 which comes from the vector that represents the encoding

4

of state (of size 500) concatenated with a one-hot action vector (only one entry is a 1 and all others
are 0s). We use 18 since there are a maximum of 18 available actions in any Atari 2600 game.

With the above explanation, we then have an error function

e(st, st+1) = ||σ(st+1 −Mφ(σ(st), at)||22

The above error function can be used to come up with a novelty function

N (st, at) =

∥∥∥∥et(st, at)t · C

∥∥∥∥2
2

where et(st, at) is the normalized error eT = eT
maxt≤T et

and C > 0 is a decay constant.

Finally, introducing a multiplier to weight how much exploration is ”valued,” we get

RBonus(s, a) = R(s, a) + βN (st, at)

Using the above functions for calculating reward bonuses, we can train an autoencoder prior to be-
ginning the training of DQN. Once the DQN training begin, we updateMphi during the evaluation
by sampling frames from experience replay.

4.3 Denoising Autoencoders and reward bonus modification

Since autoencoders are trained to reconstruct their inputs it is quite possible that without any con-
straints they learn the identity function and in that process, fail to capture useful representations of
state. The idea behind denoising autoencoders is that in order to force hidden layers to discover
more robust features and prevent them from simply learning the identity, we can train autoencoders
to reconstruct the input from a corrupted version of it. Corrupting the input can be done in different
ways. The one we used was to use dropout [7] whereby with probability p, which we set to 0.5,
some inputs are set to 0 before each layer.

5 Results

5.1 DQN Replication

The performance of the DQN replication can be seen in the following table. Since our replication
was run for 5×106 steps for each game where 1 epoch is 50,000 time steps, the training was run for
100 epochs. Thus, we should compare our DQN replication results with DQN results achieved after
100 epochs of training. The original paper by Google DeepMind [1] gives results for 1000 epochs
of training. However, the paper by Stadie et. al [2] which talks about incentivizing exploration
quotes results after 100 training epochs. Thus, we compare column 2 with columns 3 and 4. The
third column titled ”DQN Replication (Average),” as the name states, gives the average score over
the 100 training epochs plus/minus the standard deviation while the fourth column titled ”DQN
Replication (Best),” as the name states, gives the highest score achieved during the 100 training
epochs.

Game ↓
Agent→

DQN [1] DQN DQN DQN Random
Replication Replication (1000 epochs) [1] Player
(Average) (Best)

Bowling 30.5 22.29 (± 12.47) 53.25 42.4 (± 88.0) 23.1
Breakout 169.9 46.40 (± 54.26) 205.80 401.2 (± 26.9) 1.7
Enduro 321.0 248.70 (± 247.62) 777.00 301.8 (± 24.6) 0
Freeway 6.0 13.38 (± 11.93) 29.25 30.3 (± 0.7) 0
Q*Bert 5524 749.90 (± 551.50) 3027.50 10596.0 (± 3294.0) 163.9

Seaquest 2104 637.31 (± 447.16) 1665.00 5286.0 (± 1310) 68.4

Table 1: DQN Replication Results

5

As seen from the table above, our replication’s score is better than the results quoted (for 100 epochs
in [2]) on Freeway only. However, our best scores are better than the quoted results in Bowling,
Breakout and Freeway. Furthermore, a random player (one who takes random action at each time
step) clearly does worse in all the games except possibly Bowling where the average score received is
lower than the random player’s. The training curves for the DQN replication appear on the following
page.

Figure 2: Training Curves for DQN Replication with different games

In the above plots, we plot the normalized score (score after each evaluation divided by the maximum
score over the entire training). Some trends are evident. Firstly, as the plots indicate, there is a lot of
noise in the performance measure (the game score). This is likely a simple artifact of the presence
of numerous local minima as is generally the case with neural networks. This stability however does
vary among games. Breakout, for example, looks very stable and this is likely because breakout
has a very small number of actions available (move left, move right and fire) and that the game is
fully observable and deterministic (the screen contains the entire state and there are no stochastic
elements). Consequently, other games like Seaquest which have Stochastic elements like enemies
(fishes) are less stable. Now, we can look further into the interpretation of a learned policy.

5.2 Interpretation of a learned policy

To interpret a learned policy, we can observe the gameplay as the DQN agent plays after training. We
can also look at the training curves and the learned filters of the first convolutional layer (later con-
volutional layers will only capture a small portion of the image and are generally hard to interpret).
To illustrate this, we focus on the game Seaquest.

The first convolutional layer filter responses after forwarding 4 frames are shown below

The activation of each pixel can be seen using the luminance of the pixel (brighter means higher
activation). From the frames above, it appears that there is a focus on the submarine and the enemies
(fish) surrounding the submarine as well as the score and oxygen bar indicator at the bottom. Thus,
the filters give us an idea of what the agent is focusing on.

How the agent acts requires a different kind of analysis. On looking at the game play after training,
we found that the agent never goes to the top (out of the water) to retrieve oxygen. Notably, the
game ends when the oxygen bar reaches zero. It is possible that even though the agent recognizes

6

Figure 3: Filter Visualization

that the oxygen bar somehow seems to affect the score received, it still has not explored enough of
the state space to understand in what way.

5.3 Exploration Bonus affects

On adding the idea of reward bonuses for exploration, we get the results shown in the following
table.

Game ↓
Agent→

DQN w. DQN w. DQN w. DQN w. DQN w.
AE AE AE DAE DAE
[2] Replication (Avg.) Replication (Best) (Avg.) (Best)

Bowling 130 100.00 (± 15.67) 130 120 (± 20.54) 160.00
Breakout 162 165.70 (± 30.26) 210 160.80 (± 41.55) 215.00
Seaquest 2636 2750 (± 450.15) 3055 3380 (± 490.54) 3980.70

Table 2: DQN with AE replication and DAE results

As can be seen above, on adding reward bonuses for exploration, the performance of the agents seem
to generally get better. The average score for the AE replication is quite similar to the scores quoted
in the paper by Stadie et al [2]. In particular, the replication seems to do better on Breakout and
Seaquest but worse on Bowling. The denoising autoencoder seems to help in Seaquest only based
on the average score, however; the best scores for the DAE seem to be higher for all the games we
tried. The best improvement comes from Seaquest.

DAEs can be helpful as they increase the robustness of the encodings of state. Since nearly half of
the inputs are corrupted during dropout in the first layer itself, it is reasonable to assume that better
features are captured. How these features help through reward bonuses is another question.

To analyze how the use of reward bonuses help, we visualized the convolutional filters, however, the
attentions to different parts of the frame look about the same. In the case of Seaquest, the attention
to the oxygen bar is still present (as the case with the simple DQN without any reward bonuses).
Therefore, the convolutional filters alone cannot tell us how the use of autoencoders and exploration
bonuses help. Looking at the gameplay however, it then became evident that the agent had learned
to surface for oxygen.

Continuing our analysis, we questioned why a DAE does much better on Seaquest and Bowling but
not on Breakout. Since denoising corrupts the inputs, it is possible that the DAE will help more
in games with stochastic elements like Seaquest where the enemies (fish) spawn at random times.
These stochastic visual elements can be viewed as corruptions in the input.

It is also possible that the DAE helps in games with stochastic elements because the reward bonuses
assigned are not affected by the stochastic changes in the game. In other words, suppose that the
model architecture predicts the encoding of the next frame as one without any fish. If a single fish
appears in the next screen by chance a simple non-denoising autoencoder might give a high error
and thus a high bonus. With denoising, all frames are corrupted to some extent and thus minute
differences due to the stochastic nature of a game will not affect performance drastically.

7

5.4 Model Selection

As the case with most machine learning algorithms, there are many hyperparameters used in DQNs.
The ones we used were the ones used by Mnih et al [1]. These hyperparameters seem to give good
results in most games. However, it is quite likely that certain sets of hyperparameters work better
with different games.

The hyperparameters for the reward bonuses were not specified in the paper by Sadie et al [2],
however, after trying a few different parameters, we found that a decay constant of around 0.9 and
beta multiplier of 0.05 seem to give the best results and hence these are the ones we used.

In the denoising autoencoder, we chose a dropout probability of 0.5 without doing any hyperparam-
eter tuning. This is primarily because 0.5 seems to be the default parameter used in many other
applications, and it seemed to give a good error during evaluation of the autoencoder after training.

6 Conclusion

6.1 Strengths

DQNs have been shown to achieve human level control in different games [1] and this result clearly
illustrates that DQNs can learn policies for tasks that involve complex spatio-temporal input. They
are also able to learn policies for a different variety of games as well and in a model-free manner.
Adding the idea of reward bonuses, we can encourage exploration in domains where exploration is
crucial. Finally, incorporating the idea of denoising in the autoencoders used for calculating reward
bonuses helps further in the goal of awarding reward bonuses.

6.2 Weaknesses

As with most neural networks, there are many local minima and it is possible for the agent to get
stuck in these local minima leading to less than optimal policies. This also can vastly increase
the training time and produce a lot of noise in the performance measure as seen from the plots
shown previously. In fact, each run of our DQN replication (without additional changes like AEs)
took about 3 days to run. The DQN replications with AEs and DAEs took about the same time as
well. Hence, the efficiency of DQNs is still a cause for concern. Additionally, DQNs have numerous
hyperparameters and choosing these can be time consuming as well. Finally, the use of autoencoders
for providing reward bonuses while beneficial to training also makes the problem nonstationary, this
can be a problem from a theoretical standpoint though empirically the results indicate otherwise.

6.3 Summary

Thus, we have replicated DQNs and illustrated their use in finding policies for playing Atari video
games. We extended on DQNs using autoencoders for extracting representations of state and using
them along with actions to predict next state. This gives us an error measure that can be used
to encourage exploration. This modification of DQN seems to perform well and we were able to
replicate the results of Stadie et al [2]. Introducing denoising, we showed how it could further
help improve performance in stochastic type games. We also provided theory behind the algorithms
where appropriate and discussed the results obtained along with the strengths and weaknesses of the
methods used.

Individual Contribution

We all equally contributed to equally to the DQN implementation and the introduction of autoen-
coders and denoising autoencoders. In particular, since the code involves many parts that combine
together to form a whole, we each took separate parts of the code and implemented them.

8

References

[1] Mnih, Volodymyr, et al. ”Human-level control through deep reinforcement learning.” Nature 518.7540
(2015): 529-533.

[2] Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. ”Incentivizing Exploration In Reinforcement Learning
With Deep Predictive Models.” arXiv preprint arXiv:1507.00814 (2015).

[3] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602
(2013).

[4] Tsitsiklis, J. N. & Van Roy, B. (1997). An analysis of temporal-difference learning with function approxi-
mation. Automatic Control, IEEE Transactions on, 42(5), 674-690.

[5] Riedmiller, M. (2005). Neural fitted Q iterationfirst experiences with a data efficient neural reinforcement
learning method. In Machine Learning: ECML 2005 (pp. 317-328). Springer Berlin Heidelberg.

[6] Lange, S. & Riedmiller, M. (2010, July). Deep auto-encoder neural networks in reinforcement learning. In
Neural Networks (IJCNN), The 2010 International Joint Conference on (pp. 1-8). IEEE.

[7] Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. (2012). The arcade learning environment: An
evaluation platform for general agents. arXiv preprint arXiv:1207.4708.

[8] Srivastava, Nitish, et al. ”Dropout: A simple way to prevent neural networks from overfitting.” The Journal
of Machine Learning Research 15.1 (2014): 1929-1958.

[9] ”Convolutional Neural Networks (LeNet).” Convolutional Neural Networks (LeNet) DeepLearning 0.1
Documentation. N.p., n.d. Web. 17 Dec. 2015.

9

	Introduction
	Preliminaries
	Q-Learning
	Convolutional Neural Nets

	Related Work
	Methodology
	Deep Q-Network
	DQN with Reward Bonuses
	Denoising Autoencoders and reward bonus modification

	Results
	DQN Replication
	Interpretation of a learned policy
	Exploration Bonus affects
	Model Selection

	Conclusion
	Strengths
	Weaknesses
	Summary

